ÍNDICE

INTRODUCCIÓN .. 6

1. ANTECEDENTES NORMATIVOS .. 7

2. LA GESTIÓN DEL RIESGO Y EL ENFOQUE DE PROCESOS .. 11

3. CONTEXTO DE LA REGIÓN CARIBE ... 12

4. CARACTERIZACIÓN DEL DISTRITO .. 14
 4.1 Contexto General ... 14
 4.2 Aspectos Geográficos ... 16
 4.3 Aspectos Físico-ambientales .. 18
 4.3.1 Geología general .. 18
 4.3.2 Rasgos estructurales .. 19
 4.3.3 Geomorfología .. 19
 4.3.4 Hidrografía .. 20
 4.3.5 Fisiografía ... 20
 4.4 Variables Climatológicas ... 21
 4.5 Aspectos Socio-culturales .. 22
 4.6 Aspectos Económicos .. 23

5. MARCO INSTITUCIONAL Y ACTORES CLAVE ... 26

6. IDENTIFICACIÓN Y ANÁLISIS DE LOS FACTORES DE RIESGO 29
 6.1 Antecedentes Históricos ... 29
 6.2 Análisis de Amenazas .. 35
 6.2.1 Tipos de amenazas ... 36
 6.2.2 Frecuencia .. 40
 6.2.3 Intensidad .. 40
 6.2.4 Territorio afectado .. 41
 6.2.5 Calificación de las amenazas .. 42
 6.3 Análisis de Vulnerabilidad ... 44
 6.3.1 Vulnerabilidad física ... 45
6.3.2 Vulnerabilidad económica ... 46
6.3.2 Vulnerabilidad ambiental ... 47
6.3.4 Vulnerabilidad social ... 48
6.3.5 Calificación de la vulnerabilidad ... 49
6.4 Análisis del Riesgo ... 52

7. CAMBIO CLIMÁTICO ... 55

8. ESCENARIOS DE RIESGO ... 58
8.1 Escenarios de Riesgo Asociados con Fenómenos de Origen Hidrometeorológico: Huracanes ... 59
8.2 Escenarios de Riesgo Asociados con Fenómenos de Origen Hidrometeorológico: Vendavales ... 62
8.3 Escenarios de Riesgo Asociados con Fenómenos de Origen Hidrometeorológico: Inundaciones ... 63
8.4 Escenarios Riesgo Asociados con Fenómenos de Origen Hidrometeorológico: Mar de Leva 69
8.5 Escenarios de Riesgo Asociados con Fenómenos de Origen Geológico: Tsunami ... 70
8.6 Escenarios de Riesgo Asociados con Fenómenos de Origen Geológico: Remoción en Masa ... 72
8.7 Escenarios de Riesgo Asociados con Fenómenos de Origen Geológico: Erosión Costera ... 74
8.8 Escenarios de Riesgo Asociados con Fenómenos de Origen Geológico: Diapirismo de Lodos76
8.9 Escenarios de Riesgo Asociados con Fenómenos de Origen Antrópico: Aglomeraciones en Público ... 77
8.10 Escenarios de Riesgo Asociados con Fenómenos de Origen Tecnológico: Derrames (líquidos y/o sólidos), fugas de gases y explosiones ... 79
8.11 Escenarios de Riesgo Asociados con Fenómenos de Origen Tecnológico: Incendios ... 81

9. ESTRATEGIAS PARA LA ACCIÓN, PLANIFICACIÓN PRESUPUESTAL Y COSTOS ... 82
9.1 Conocimiento del Riesgo ... 82
9.2 Reducción del Riesgo ... 83
9.3 Manejo del Desastre ... 84
9.4 Planificación presupuestal y costos ... 84

10. LA GESTIÓN DEL RIESGO EN LA PLANIFICACIÓN TERRITORIAL ... 86
10.1 Plan de acción ... 87
10.2 El componente general de los planes de ordenamiento territorial ... 88
10.3 El componente urbano de los planes de ordenamiento territorial

10.4 El componente rural en los planes de ordenamiento territorial

10.5 Cambio climático

11. RECOMENDACIONES

BIBLIOGRAFÍA

ANEXO 1. MATRIZ DE ESTRATEGIAS PARA LA ACCIÓN
ÍNDICE DE TABLAS E ILUSTRACIONES

Índice de Tablas

Tabla 1. Normatividad aplicable a la gestión del riesgo de desastres en Colombia 8
Tabla 2. Amenazas de la Región Caribe ... 13
Tabla 3. Cronología de eventos Cartagena de Indias D.T.C ... 30
Tabla 4. Tipo de amenazas identificadas por localidades, zona rural y zona insular, Cartagena de Indias .. 39
Tabla 5. Frecuencia ... 40
Tabla 6. Intensidad ... 41
Tabla 7. Territorio Afectado ... 41
Tabla 8. Calificación de las amenazas .. 42
Tabla 9. Consolidado de amenazas por localidad, zona urbana y zona insular, Cartagena de Indias .. 43
Tabla 10. Variables de evaluación de vulnerabilidad física .. 46
Tabla 11. Variables de análisis de vulnerabilidad económica ... 47
Tabla 12. Variables de análisis de vulnerabilidad ambiental .. 48
Tabla 13. Variables de análisis de vulnerabilidad social ... 49
Tabla 14. Calificación de vulnerabilidad total .. 50
Tabla 15. Consolidado de vulnerabilidad por localidades, zona rural e insular de Cartagena de Indias .. 51
Tabla 16. Matriz de amenaza y vulnerabilidad para estimación del nivel de riesgo 53
Tabla 17. Registro de análisis históricos de huracanes que afectaron el caribe Colombiano 54
Tabla 18. Causas y puntos críticos de inundación en el Distrito de Cartagena 60
Tabla 19. Tsunami ocurridos en el Caribe ... 72
Tabla 20. Niveles de riesgo estimativo y sectores susceptibles a fenómenos de remoción en masa en Cartagena de Indias D.T.C .. 73
Tabla 21. Niveles de riesgo estimativo y sectores en los que se manifiesta el diapirismo de lodos en Cartagena de Indias D.T.C .. 77
Tabla 22. Evento de origen tecnológico en la Zona Industrial de Mamonal 80
Tabla 23. El riesgo de deslizamientos como determinante para el ordenamiento 97
Tabla 24. El riesgo de inundaciones como determinante para el ordenamiento 98
Índice de Ilustraciones

Ilustración 1. Marco institucional del Sistema Nacional para la Gestión del Riesgo 26
Ilustración 2. Tipo de eventos reportados y porcentaje correspondiente para Cartagena D.T.C. 32
Ilustración 3. Tipo de eventos y valor en pérdidas reportados para Cartagena D.T.C. 34
Ilustración 4. Variables utilizadas para el análisis de las amenazas ... 35
Ilustración 5. Clasificación de los tipos de amenazas ... 36
Ilustración 6. El huracán Iván de la temporada 2004, ocupó totalmente la porción del Caribe comprendida entre la costa suramericana y la isla Hispaniola (Haití y República Dominicana) 37
Ilustración 7. Las imágenes muestran la explosión de la plataforma petrolera de la BP 38
Ilustración 8. Esquema de análisis del riesgo .. 52
Ilustración 9. Trayectoria y escala de intensidad de las Tormentas Tropicales 59
Ilustración 10. Trayectoria del huracán Joan, octubre de 1988, que afectó a Cartagena de Indias. 61
Ilustración 11. Canal en el sector de La Castellana, nótese la acumulación de basuras 68
Ilustración 12. Sectores de alta susceptibilidad a la inundación, partes bajas, zonas de llanuras intermareales y de manglar, Ciénaga de La Virgen ... 68
Ilustración 15. Zonas de generación de sismos tsunamígenicos en el Océano Pacífico y el Mar Caribe ... 71
Ilustración 17. Erosión litoral que produce el retroceso de la línea de costa en Tierrabomba 76
Ilustración 18. Complejo polideportivo de la Villa Olímpica de Cartagena de Indias 79
INTRODUCCIÓN

El PDGR de Cartagena de Indias se ha formulado siguiendo los lineamientos del Sistema Nacional de Gestión del Riesgo de Desastres –SNGRD– y de la Ley 1523 de 2012, que presenta la Gestión del Riesgo con un enfoque de procesos, en el que se da mayor importancia a la prevención, superando la visión que existía sobre la atención de desastres. Como figura en el plan, este enfoque tiene que ser claramente entendido por las autoridades administrativas, las diferentes entidades y empresas del sector privado, así como por la sociedad civil para la toma de decisiones que conduzcan a un desarrollo sostenible.

Este tipo de instrumento de planificación, obedece de igual manera al enfoque de estrategias dadas por el Marco de Acción de Hyogo, Estrategia Internacional para la Reducción de Desastres, que fue aprobada en la Conferencia Mundial sobre Reducción de Desastres realizada en Kobe (Japón), en enero de 2005; en la que se convoca a trabajar por la reducción de vulnerabilidades generadas por el desarrollo, buscando la construcción de sociedades más resilientes a los impactos de los eventos naturales.

El análisis de los factores de riesgo, los escenarios, las estrategias y el plan como tal, fueron validados a través de talleres con autoridades, funcionarios de la administración distrital, sectores, e instituciones que conforman el Consejo Distrital para la Gestión del Riesgo, así como con representantes de la sociedad civil y las empresas del sector industrial. El PDGR de Cartagena de Indias, define las estrategias que orientarán las acciones tendientes a reducir los riesgos de desastres por efectos de eventos naturales o antrópicos en el distrito, establece las medidas para armonizar el desarrollo con las condiciones y limitaciones del medio natural, a fin de reducir al máximo la posibilidad de pérdida de vidas y de los medios de vida.

La formulación se realizó sobre una línea base, construida mediante una amplia recopilación de datos, a través de la revisión de documentación e información existente (fuente secundaria), luego se recogió la información de funcionarios que trabajan en organismos públicos y privados del distrito y representantes de la sociedad civil, en competencia en el tema, a través de talleres participativos.
1. ANTECEDENTES NORMATIVOS

Los antecedentes normativos sobre la reglamentación para la prevención y atención de desastres datan del año 1988, año en el que se creó el Sistema Nacional para la prevención y Atención de desastres a través de la Ley 46 de 1988, y mediante el Decreto 93 de 1988 se adoptó el Plan Nacional para la Prevención y Atención de Desastres. Para el año 1989, por medio del Decreto Ley 919, se crearon los comités regionales para la prevención y atención de desastres CREPAD y los comités locales para la prevención y atención de desastres CLOPAD. Durante el periodo comprendido entre los años 1993 a 2001, se suscribieron varias leyes y se expidieron numerosos decretos que buscaban promover las buenas prácticas en materia de prevención de desastres y se generaron documentos CONPES, como el 3146 de 2001 que daban cuenta de la necesidad de fortalecer el sistema de prevención y atención de desastres.

Por su parte, el marco normativo internacional destaca ratificaciones y mandatos, tales como la Declaración de Río de Janeiro 1992, la cual señala la importancia de promover la cooperación entre los países para informar sobre la ocurrencia de desastres y el Marco de Acción de Hyogo 2005 – 2015, el cual busca la integración de la reducción del riesgo de desastre en las políticas, los planes y los programas de desarrollo; haciendo énfasis en la prevención y mitigación, la preparación para casos de desastres, la reducción de la vulnerabilidad y la creación y el fortalecimiento de las instituciones.

Con el fenómeno ENOS\(^1\), en su fase fría la Niña, el gobierno nacional expide a finales del año 2010, varios decretos que sustentaban el Estado de emergencia que enfrentaba el país y fue en este momento, en medio de la emergencia, que el Estado empezó a pensar en la gestión del riesgo como el enfoque clave para fortalecer un verdadero sistema de prevención y atención de desastres que hiciera frente a los efectos del cambio climático.

En la tabla 1 se presenta una síntesis de las normativas aplicables a la gestión del riesgo en Colombia:

\(^1\) El ENOS es un ciclo oceánico-atmosférico que se desarrolla en las aguas ecuatoriales del Océano Pacífico Tropical. Consta de dos fases, correspondientes a un ciclo del fenómeno: la fase cálida, conocida popularmente como **El Niño** y la fase fría, conocida popularmente como **La Niña**. Las fases están referidas a las temperaturas superficiales y subsuperficiales del Océano Pacífico ecuatorial.
Tabla 1. Normatividad aplicable a la gestión del riesgo de desastres en Colombia

<table>
<thead>
<tr>
<th>NORMATIVAS</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL 2811 de 1974</td>
<td>Código de los Recursos Naturales. Título II sobre Protección Forestal (Art.241-242-243-244 y 245)</td>
</tr>
<tr>
<td>Ley 46 de 1988</td>
<td>Crea el Sistema Nacional para la Prevención y Atención de Desastres y fija sus objetivos.</td>
</tr>
<tr>
<td>Ley 9 de 1989</td>
<td>Determina los parámetros de planificación y gestión urbana en Colombia.</td>
</tr>
<tr>
<td>Ley de Reforma Urbana</td>
<td>Obliga a incorporar en los Planes de Desarrollo aspectos de gestión del riesgo para la reubicación de asentamientos en zonas de alto riesgo.</td>
</tr>
<tr>
<td>Decreto 919 de mayo 1989</td>
<td>Obliga a las oficinas de Planeación a elaborar los planes en armonía con las normas y planes sobre prevención y atención de situaciones de desastre.</td>
</tr>
<tr>
<td>Organiza el SNPAD</td>
<td>Obliga a las Corporaciones Autónomas Regionales hacer inventarios y análisis de zonas de riesgos.</td>
</tr>
<tr>
<td>Ley 99 de 1993</td>
<td>Organiza el Sistema Nacional Ambiental (SINA) y define su articulación con el SNPAD.</td>
</tr>
<tr>
<td>Organiza el SINA</td>
<td>Define la prevención de desastres y las medidas de mitigación como asunto de interés colectivo y de obligatorio cumplimiento.</td>
</tr>
<tr>
<td>Ley 99 de 1993</td>
<td>Obliga a las CAR a realizar actividades de análisis, seguimiento, prevención y control de desastres, y a asistir a las autoridades competentes en los aspectos en la prevención y atención de emergencias y desastres.</td>
</tr>
<tr>
<td>Resolución 7550 de 1994</td>
<td>Obliga a las Secretarías de Educación a nivel Departamental y Municipal a incorporar la prevención y atención de desastres dentro del Proyecto Educativo Institucional, según el conocimiento de las necesidades y riesgos de la región.</td>
</tr>
<tr>
<td>Ley 195 de 1994</td>
<td>Obliga a inventariar y monitorear la biodiversidad.</td>
</tr>
<tr>
<td>Aprueba el Convenio de Diversidad Biológica</td>
<td>Obliga al establecimiento de áreas protegidas.</td>
</tr>
<tr>
<td></td>
<td>Fomenta la rehabilitación y restauración de ecosistemas degradados en colaboración con la población local.</td>
</tr>
<tr>
<td></td>
<td>Promueve el respeto del conocimiento tradicional e indígena sobre la biodiversidad.</td>
</tr>
<tr>
<td>Decreto 969 de 1995</td>
<td>Por el cual se organiza y reglamenta la Red Nacional de Centros de Reserva para la Atención de Emergencias.</td>
</tr>
<tr>
<td>Ley 322 de 1996</td>
<td>Crea el SNB.</td>
</tr>
<tr>
<td>Crea el SNB</td>
<td>Se reglamentó por la Resolución 3580 de 2007.</td>
</tr>
<tr>
<td>CONPES 2834 de 1996 “Políticas de Bosques”</td>
<td>Establece la necesidad de formular y poner en marcha el “Programa Nacional para la Prevención, Control y Extinción de Incendios Forestales y rehabilitación de áreas afectadas”.</td>
</tr>
<tr>
<td>Ley 388 de 1997</td>
<td>Obliga a la todos los municipios del país a formular planes de ordenamiento territorial teniendo en cuenta la zonificación de amenazas y riesgos.</td>
</tr>
<tr>
<td>Ley de ordenamiento territorial</td>
<td>Obliga a todos los departamentos del país a prestar asistencia técnica para la formulación de los planes de ordenamiento municipal.</td>
</tr>
<tr>
<td></td>
<td>Promueve el uso equitativo y racional del suelo, la preservación y defensa del patrimonio ecológico y cultural localizado en su ámbito territorial y la prevención de desastres en asentamientos de alto riesgo, así como la ejecución de acciones urbanísticas eficientes.</td>
</tr>
<tr>
<td>Ley 400 de 1997</td>
<td>Por el cual se adoptan normas sobre construcciones sismos resistentes.</td>
</tr>
<tr>
<td>Decreto 2340 de 1997</td>
<td>Por el cual se dictan unas medidas para la organización en materia de prevención y mitigación de incendios forestales y se dictan otras disposiciones.</td>
</tr>
<tr>
<td>Decreto 93 de 1998</td>
<td>Orienta las acciones del Estado y de la sociedad civil para la prevención, atención y reconstrucción.</td>
</tr>
</tbody>
</table>
| Adopta el PNPAD | Determina todas las políticas, acciones y programas, tanto de carácter sectorial como del orden.
nacional, regional y local. Prioriza el conocimiento sobre riesgos de origen natural y antrópico y la incorporación de la prevención y reducción de riesgos en la planificación. Promueve la incorporación de criterios preventivos y de seguridad en los Planes de Desarrollo. Promueve la recuperación rápida de zonas afectadas, evita duplicidad de funciones y disminuye los tiempos en la formulación y ejecución de proyectos.

<table>
<thead>
<tr>
<th>Decreto 879 DE 1998</th>
<th>Reglamenta las disposiciones referentes al ordenamiento del territorio municipal y distrital y a los planes de ordenamiento territorial.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreto 350 de 1999</td>
<td>Dicta disposiciones para hacer frente a la emergencia económica, social y ecológica causada por el terremoto ocurrido el 25 de enero de 1999. Las Corporaciones Autónomas Regionales con jurisdicción en la zona de desastre apoyarán y asistirán técnicamente a los municipios afectados en el área de su jurisdicción, en la incorporación de los determinantes y criterios ambientales en sus planes de ordenamiento.</td>
</tr>
<tr>
<td>Decreto 2015 de 2001</td>
<td>Reglamenta la expedición de licencias de urbanismo y construcción con posterioridad a la declaración de situación de desastre o calamidad pública”.</td>
</tr>
<tr>
<td>CONPES 3146 de 2001</td>
<td>Define las estrategias y recursos para la ejecución del Plan Nacional para la Prevención y Atención de Desastres.</td>
</tr>
<tr>
<td>Primera Comunicación Nacional ante CMNUCC 2001</td>
<td>Elabora el primer inventario nacional de Gases de Efecto Invernadero. Identifica los ecosistemas más susceptibles al cambio climático. Plantearon las primeras medidas de adaptación para el país.</td>
</tr>
<tr>
<td>Lineamientos de Política de Cambio Climático 2002</td>
<td>Mejora la capacidad de adaptación a los impactos del cambio climático. Promueve la reducción de emisiones por fuente y absorción por sumideros de GEI. Promueve la investigación, divulgación y concientización pública. Fortalece el sistema de información en Cambio Climático. Desarrollar mecanismos financieros.</td>
</tr>
<tr>
<td>CONPES 3242 de 2003</td>
<td>Establece y reglamenta la venta de Servicios Ambientales de Mitigación de Cambio Climático.</td>
</tr>
<tr>
<td>CONPES 3318 del 2004</td>
<td>Autorización a la nación para contratar operaciones de crédito externo con la banca multilateral hasta por $260 millones de dólares para financiar parcialmente el programa de reducción de la vulnerabilidad fiscal del Estado frente a los desastres naturales.</td>
</tr>
<tr>
<td>Directiva Ministerial N.12 de 2009</td>
<td>Prohíbe a las Secretarías de Educación de las entidades territoriales interrumpir la prestación del servicio educativo en situaciones de emergencia.</td>
</tr>
<tr>
<td>Política Nacional de Biodiversidad</td>
<td>Sus objetivos son: conservar, conocer y utilizar la biodiversidad. Hace énfasis en la distribución justa y equitativa de los beneficios derivados de la utilización de la biodiversidad.</td>
</tr>
<tr>
<td>Decreto 3888 de 2007</td>
<td>Por el cual se adopta el Plan Nacional de Emergencia y Contingencia Para Eventos de Afluencia Masiva de Público y se Conforma la Comisión Nacional Asesora de Programas Másmos y se Dictan Otras Disposiciones.</td>
</tr>
<tr>
<td>Decreto 4580 de 2010</td>
<td>Por el cual se declara el Estado de Emergencia Económica, Social Ecológica por razón de grave calamidad pública.</td>
</tr>
<tr>
<td>Decreto 4628 de 2010</td>
<td>Dicta normas para la expropiación por vía administrativa para la atención de la emergencia en casos necesarios.</td>
</tr>
<tr>
<td>Decreto 4629 de 2010</td>
<td>Modifica transitoriamente el Art 45 de la Ley 99 de 1993 y se dicta otras disposiciones para atender la situación de desastre nacional y de emergencia.</td>
</tr>
</tbody>
</table>

2 CMNUCC: Convención Marco de las Naciones Unidas sobre el Cambio Climático.
3 ÍDEM.
<table>
<thead>
<tr>
<th>Decreto 4673 de 2010</th>
<th>Adiciona el artículo 38 de la Ley 1333 de 2009 y dicta otras disposiciones para atender la situación de desastre nacional, con directrices específicas para las autoridades ambientales.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ley 1454 de 2011</td>
<td>Pone en marcha las Zonas de Inversión para la superación de la pobreza y la marginalidad. Define la aplicación de recursos de regalías (Fondos de Compensación Territorial y de Desarrollo Regional). Establece Regiones de Planeación y Gestión y de las Regiones Administrativas y de Planificación. Posibilita la conformación de provincias como instancias administrativas y de planificación. Facilita la conformación de áreas metropolitanas y fortalece su régimen fiscal. Flexibiliza competencias entre nación y entidades territoriales mediante la figura del “contrato plan”.</td>
</tr>
<tr>
<td>Ley Orgánica de Ordenamiento Territorial (LOOT)</td>
<td>Define la estrategia institucional (creación del Sistema Nacional Cambio Climático). Define el plan de acción de la estrategia financiera (creación del Comité de Gestión Financiera para el Cambio Climático). Propone la generación de información sobre cambio climático en las estadísticas oficiales (DANE) Anuncia el Estudio de Impactos Económicos de Cambio Climático para Colombia – EIECC.</td>
</tr>
<tr>
<td>Decreto 020 de 2011</td>
<td>Por el cual se declara el Estado de Emergencia Económica, Social y Ecológica por razón de grave calamidad pública”</td>
</tr>
<tr>
<td>Decreto 141 de 2011</td>
<td>Por medio del cual se modifican los artículos 24, 26, 27, 28, 29, 31, 33, 37,41,44,45,65 y 66 de la Ley 99 de 1993, y se adoptan otras determinaciones.</td>
</tr>
<tr>
<td>CONPES 3700 de 2011</td>
<td>Define la estrategia institucional (creación del Sistema Nacional Cambio Climático). Define el plan de acción de la estrategia financiera (creación del Comité de Gestión Financiera para el Cambio Climático). Propone la generación de información sobre cambio climático en las estadísticas oficiales (DANE) Anuncia el Estudio de Impactos Económicos de Cambio Climático para Colombia – EIECC.</td>
</tr>
<tr>
<td>Política de cambio climático</td>
<td>Define la estrategia institucional (creación del Sistema Nacional Cambio Climático). Define el plan de acción de la estrategia financiera (creación del Comité de Gestión Financiera para el Cambio Climático). Propone la generación de información sobre cambio climático en las estadísticas oficiales (DANE) Anuncia el Estudio de Impactos Económicos de Cambio Climático para Colombia – EIECC.</td>
</tr>
<tr>
<td>Decreto 4147 de 2011</td>
<td>Asegura la coordinación y transversalidad en la aplicación de las políticas. Define para la Unidad: personería jurídica, autonomía administrativa y financiera, patrimonio propio, nivel descentralizado y adscrita la Presidencia de la República. Dirige y coordina el SNPAD. Promueve articulación de los sistemas nacionales de: Planeación, Bomberos, Ambiente, Gestión de Riesgo, ciencia y tecnología.</td>
</tr>
<tr>
<td>Crea Unidad Nacional para la Gestión del Riesgo de Desastres</td>
<td>Adoptan las directrices para la formulación del “PAAEME”.</td>
</tr>
<tr>
<td>Decreto 510 de 2011</td>
<td>Adicional de la reforma del PAAEME y PAAEME para la formulación del “PAAEME”</td>
</tr>
<tr>
<td>Ley 1523 de 2012</td>
<td>Por la cual se adopta la Política Nacional de Gestión del Riesgo de Desastres, esta Ley permite establecer medidas directas para la prevención y mitigación de riesgos por medio de la planeación Nacional, Departamental y Municipal. Establece la corresponsabilidad de los sectores públicos privados y de la comunidad frente a los riesgos naturales por medio del conocimiento del riesgo, la prevención de riesgos y el manejo de desastres.</td>
</tr>
<tr>
<td>Ley 1617 de 2013</td>
<td>Por la cual se expide el régimen para los distritos especiales. El objeto de esta ley es el de dotar a los distritos de las facultades, instrumentos y recursos que les permitan cumplir sus funciones y prestar los servicios a su cargo, así como promover el desarrollo integral de su territorio para contribuir al mejoramiento de la calidad de vida de sus habitantes, a partir del aprovechamiento de sus recursos y ventajas derivadas de las características, condiciones y circunstancias especiales que estos presentan.</td>
</tr>
</tbody>
</table>

Fuente: Proyecto PNUD-UNGRD, 2012
2. LA GESTIÓN DEL RIESGO Y EL ENFOQUE DE PROCESOS

Cuando se habla de gestión del riesgo, hacemos referencia al proceso social de planeación, ejecución, seguimiento y evaluación de políticas y acciones para el conocimiento del riesgo y promoción de una mayor conciencia del mismo, con el ánimo de impedir o evitar que se genere, reducirlo o controlarlo cuando ya existe y para prepararse y manejar las situaciones de desastre, así como para la posterior recuperación.

La gestión del riesgo basada en procesos se introduce bajo la consideración dada por las tendencias modernas de gestión, en que un resultado deseado se alcanza más eficientemente cuando las actividades y los recursos relacionados se gestionan como un proceso, el cual consiste en un conjunto de actividades interrelacionadas para generar valor, transformando insumos en productos. El componente de procesos define el marco general de la gestión del riesgo, es el que hacer para lograr los objetivos del territorio con miras a adelantar su proceso de desarrollo en función del riesgo y así contribuir a su sostenibilidad, viabilidad como unidad territorial y logro del futuro deseado por la comunidad (SNPAD, 2010).

Toda problemática de riesgo a través del enfoque de procesos se realiza mediante una serie de actividades que tienen por objeto conocer el riesgo, valorarlo, tomar medidas para prevenir y mitigar situaciones de emergencia, prepararse para la eventual ocurrencia del fenómeno, adelantar las acciones para la atención, evaluar la situación una vez superada la crisis para la cuantificación de efectos, prepararse para otros posibles eventos y diseñar mecanismos para lograr un adecuado manejo del riesgo financiero entre otras actividades.

Para optimizar la planeación, ejecución y evaluación de las líneas de acción de la gestión del riesgo, se aplica el enfoque de procesos que se fundamenta en: 1) El conocimiento del riesgo, 2) la reducción del riesgo y 3) el manejo de los desastres. Dichos procesos no son independientes, por el contrario, son continuos y dependen unos de otros; por ejemplo, no se puede entender el manejo de desastres o la reducción del riesgo, sin que previamente exista una gestión del conocimiento sobre el riesgo de desastres.

La intervención del riesgo se ejecuta desde estos procesos mediante acciones, actividades y productos específicos para cada uno de ellos, con el propósito explícito de contribuir a la seguridad, el bienestar, la calidad de vida de las personas y al desarrollo sostenible (Artículo 1º; Ley de Gestión del Riesgo, 1523 de 2012). La gestión del riesgo a nivel distrital supone un proceso participativo que involucra a todos los actores del territorio quienes se coordinan a su vez con actores del orden departamental, nacional e incluso internacional.
3. CONTEXTO DE LA REGIÓN CARIBE

En las últimas décadas, en el mundo en general y en América Latina en particular, los desastres vinculados con fenómenos naturales y tecnológicos han aumentado de manera vertiginosa, tanto en número como en magnitud de los daños causados. Por su parte, la sociedad y el territorio colombianos han venido padeciendo las consecuencias de ese crecimiento de los desastres. En especial en los últimos años, gran parte del país ha sufrido en alto grado los efectos de la presencia de fenómenos hidrometeorológicos, con elevadas vulnerabilidades originadas principalmente por el deterioro de las condiciones sociales, económicas, ambientales e institucionales, elementos claves para la generación de desastres socionaturales.

Las vulnerabilidades frente a los fenómenos naturales en Colombia seguirán creciendo, entre otras razones, por los elevados niveles de pobreza y de marginalidad existentes, por la creciente concentración de la propiedad del suelo urbano y rural, por la escasez de alternativas de soluciones de vivienda segura y económicamente accesible para los más pobres, por el desarrollo ilegal y desordenado de las ciudades, por el uso inapropiado del suelo y de los recursos naturales, por el alto deterioro ambiental, por los graves daños generados por la corrupción pública y privada y, en los últimos años, debido al conflicto interno, por el significativo desplazamiento de población, la cual se ha ubicado incontroladamente en su gran mayoría en zonas de alto riesgo, sobre todo en áreas urbanas.

La región Caribe colombiana presenta como eventos relacionados con amenaza y riesgo, las inundaciones y en menor proporción los movimientos de remoción en masa y fenómenos de sismicidad que son mucho más localizados. Las inundaciones generalmente corresponden a procesos naturales de normal ocurrencia periódica. Actualmente, el fenómeno de la inundación es cada vez más frecuente y la mayoría de las poblaciones, tanto rurales como urbanas, son afectadas por esta amenaza, con daños en las poblaciones, en la infraestructura y en los bienes y servicios.

Las características físicas de esta región, han pasado por transformaciones constantes debido a procesos naturales y antrópicos y se ha generado una serie de condiciones que mantienen a la región en un estado de vulnerabilidad. Esta, se ha aumentado por acción de las actividades del hombre, en donde sobresale la presión que ejerce el incremento de la población en las ciudades y sobre los recursos naturales. Factores ambientales, socio-culturales, tecnológicos, políticos y económicos tienen gran incidencia sobre la vulnerabilidad de la región caribe.

Debido a la magnitud de las afectaciones en la población, bienes materiales y el medio ambiente, se hace necesario diseñar medidas de prevención y mitigación y establecer instrumentos que permitan minimizar los efectos negativos producidos por desastres naturales o los producidos por el hombre. En la tabla 2 se presenta una compilación de las amenazas presentes en la región, sus principales causas y algunos efectos asociados a las mismas.
Tabla 2. Amenazas de la Región Caribe

<table>
<thead>
<tr>
<th>AMENAZAS</th>
<th>CAUSAS</th>
<th>EFECTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inundaciones</td>
<td>Desborde de río principal</td>
<td>Además de las perdidas en bienes materiales y vidas, se presentan problemas en las actividades económicas, tales como la afectación en cultivos y áreas de pasto para ganadería. También se rompe el balance hídrico del área, generando a su vez, una sustancial disminución de la productividad pesquera al reducirse las migraciones reproductivas y la oferta de nutrición de los peces de importancia comercial.</td>
</tr>
<tr>
<td></td>
<td>Encharcamiento por aguas lluvias</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aportes laterales de afluientes</td>
<td></td>
</tr>
<tr>
<td>Remoción en Masa</td>
<td>Deslizamientos de tierra</td>
<td>Sepultamiento de viviendas y poblaciones, taponamiento de vías y destrucción de infraestructura, como acueducto, puentes, etc.</td>
</tr>
<tr>
<td></td>
<td>Avalanchas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caídas de rocas</td>
<td></td>
</tr>
<tr>
<td>Erosión</td>
<td>Naturales</td>
<td>Degradación de los suelos, perdida de fertilidad, aumento de la lixiviación en épocas lluviosas, pérdida de la retención de las aguas, ocasionando que muchos arroyos y quebradas no tengan agua en los períodos secos, en tanto que en épocas de lluvias, las capas de materia orgánica expuestas al impacto de estas, sean arrastradas.</td>
</tr>
<tr>
<td></td>
<td>Antrópicas</td>
<td></td>
</tr>
<tr>
<td>Sismos</td>
<td>Sismos Volcánicos</td>
<td>Desplazamiento de poblaciones cercanas a los lugares donde ocurren movimientos sísmicos, destrucción de infraestructura urbana y vial. Migración de fauna.</td>
</tr>
<tr>
<td></td>
<td>Sismos Tectónicos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sismos Locales</td>
<td></td>
</tr>
<tr>
<td>Sequia</td>
<td>Desertificación</td>
<td>Se genera una baja productividad de los suelos, disminución de afluentes (agua), perdida de capa vegetal, erosión intensivas, etc.</td>
</tr>
<tr>
<td></td>
<td>Desertización</td>
<td></td>
</tr>
<tr>
<td>Incendios Forestales</td>
<td>Naturales</td>
<td>Disminución de capa vegetal, migración de especies de animales, cambios en los ciclos hidrológicos, incremento del PH en los suelos, aumento de la erosión, aumento en la emisión de gases de efecto invernadero, destrucción de los recursos naturales para el sustento de la población.</td>
</tr>
<tr>
<td></td>
<td>Antrópicas</td>
<td></td>
</tr>
<tr>
<td>Amenazas Antrópicas</td>
<td>Tecnológicos</td>
<td>Disminución de la calidad de vida de la población, afectación en todos los renglones de la economía, contaminación de las aguas, los suelos, el aire; aumento de los gases de efecto invernadero, etc.</td>
</tr>
</tbody>
</table>

4. CARACTERIZACIÓN DEL DISTRITO

4.1 Contexto General

Cartagena de Indias, se encuentra localizada en la región Caribe colombiana, al norte del departamento de Bolívar, en las coordenadas 10° 26´ latitud norte y 75° 33´ longitud oeste (ver Mapa 1). Limitando con el mar Caribe al oeste y norte, al sur con los municipios bolivarenses de Turbaco, Turbana y Arjona, al oriente con los de Santa Rosa de Lima, Clemencia y Santa Catalina. Su territorio comprende una franja con 193 kilómetros de costa, desde los límites con Galerazamba hasta Boca Flamenguio (Secretaría de Planeación Distrital, 2001). El territorio, alberga diversos ecosistemas: Arrecifes, manglares y lagunas costeras, que prestan servicios ambientales y soportan actividades económicas como la pesca, el turismo, la navegación, el desarrollo portuario y la industria entre otros.

Aunque es considerada como la quinta urbe más poblada de Colombia y el principal centro petroquímico y turístico del país, y destino de proyectos de inversión portuarios, industriales y hoteleros, la ciudad presenta un desarrollo desequilibrado con origen en vulnerabilidades en lo económico, social y ambiental, que se traslanpan y se refuerzan entre sí, a lo anterior se suma la coexistencia con un ecosistema frágil y vulnerable a los cambios climatológicos que suceden a escala global.

Su centro histórico fue declarado como Patrimonio Nacional de Colombia en 1959 y por la UNESCO como Patrimonio de la Humanidad en noviembre de 1984, siendo el primer lugar colombiano en entrar a formar parte de la Lista del Patrimonio Mundial Cultural y Natural, con la denominación de: “Puerto, Fortaleza y Conjunto Monumental de Cartagena”.

Mapa 1. Localización General Distrito de Cartagena

4.2 Aspectos Geográficos

Cartagena cuenta con un área de 60.900 hectáreas, de las cuales 7.590,8 (el 12.5%) corresponden a suelo urbano y 53.309 hectáreas a suelo rural. Según el DANE, a finales del año 2011 la ciudad alojaba 956.181 habitantes, el 47.7% de la población bolivarense, lo que muestra una densidad de 1.535 habitantes por km².

La división político-administrativa del distrito de Cartagena fue definida en el Acuerdo 006 de 2003, establece tres localidades (ver Mapa 2), cada una con un alcalde menor designado por el Alcalde Mayor, definidas por su homogeneidad relativa desde el punto de vista geográfico, cultural, social y económico.

- Localidad 1. Histórica y del Caribe Norte, que concentra el patrimonio arquitectónico, la mayor parte de la población (39% del total) y las actividades comerciales de la ciudad.
- Localidad 2. De la Virgen y Turística, hoy por hoy la principal zona de expansión urbana y de servicios turísticos, territorio de asentamientos afro y espacio de gran parte de los cuerpos de agua costeros.
- Localidad 3. Industrial y de la Bahía, moldeada territorialmente por la bahía interna y donde opera el grueso de las actividades industriales y portuarias de la ciudad.

Cada localidad la conforman, a su vez, Unidades Comuneras de Gobierno (UCG), que en el caso urbano la integran barrios; y en el rural, corregimientos y veredas. Cartagena cuenta actualmente con 15 UCG urbanas y 15 UCG rurales. Las UCG rurales están conformadas por los corregimientos de Archipiélago de San Bernardo, Arroyo de Piedra, Arroyo Grande, Barú, Bayunca, Bocachica, Caño del Oro, Islas del Rosario, Isla Fuerte, La Boquilla, Pasacaballos, Pontezuela, Punta Canoa, Santa Ana y Tierrabomba.

El 95,4% de la población de Cartagena reside en la cabecera de la ciudad (911.927 habitantes), mientras que el 4.6% restante habita en la zona rural (44.254 habitantes).

Al cierre del año 2011 existían en Cartagena 180 barrios. La Localidad Histórica y del Caribe Norte reúne el mayor número (74, esto es, el 41% del total), seguida por la Industrial de la Bahía, que agrupa 65 (36%). La Localidad de la Virgen y Turística asienta el menor número de barrios de la ciudad (41), aunque tiene la mayor extensión territorial (su área comprende la zona rural que se extiende al norte de la ciudad). El predominio barrial de la Localidad Histórica y del caribe Norte se refleja en la mayor concentración de población y hogares, así como en la más elevada densificación según se trate del número de personas por hogar o por vivienda.
Mapa 2. División político-administrativa de Cartagena, 2011

LOCALIDADES DEL DISTRITO DE CARTAGENA

4.3 Aspectos Físico-ambientales

Cartagena presenta una variedad de ecosistemas de diferentes características, que al integrarse conforman un conjunto ambiental especial. Este complejo natural se configura a partir de la integración de los ecosistemas marino-costeros de la bahía de Cartagena, la ciénaga de la Virgen y la bahía de Barbacoas, el complejo arrecifal de las islas del Rosario, Barú y Tierrabomba, las planicies costeras aledañas y el espacio urbano; características que hacen del entorno una región con grandes atributos ambientales (PNUMA, 2009).

4.3.1 Geología general

Regionalmente, el distrito de Cartagena se ubica en un terreno con características litológicas y estructurales muy particulares, llamado Cinturón del Sinú o Terreno Sinú. Este se halla limitado hacia el oriente por el lineamiento Falla del Sinú, al occidente por el lineamiento Colombia (límite talud continental y llanura abisal) y por el sur con la falla Dabeiba (Duque, 1979, en INGEOMINAS, 1988).

El terreno Sinú que muestra una disposición elongada en dirección noreste, está constituido por una secuencia de rocas de origen marino profundo y turbidítico, de más de 5.000 m de espesor y de edad del Mioceno superior – Plioceno inferior; suprayacidas por un conjunto de rocas de origen marino somero y carbonatadas hasta de 1.000 m de espesor y de edad del Plioceno superior – Holoceno (Duque, 1979 en INGEOMINAS, 2001).

Estructuralmente, el Cinturón del Sinú se caracteriza por su conformación en anticlinales estrechos y sinclinales amplios donde es común la ocurrencia de “volcanes de lodo”, como una de las manifestaciones de “diapirismo de lodos”. Este fenómeno juega un papel importante en la conformación estructural del Cinturón del Sinú, tanto en la zona continental como marina, donde se han evidenciado volcanes de lodo, domos y abombamientos que determinan en gran medida la morfología actual del área (Duque, 1984; Vernette et al., 1990; Vernette, 1992, en INGEOMINAS, 2001).

En el área de Cartagena afloran rocas de edad terciaria de origen marino-transicional continental, que se extienden en edad desde el Plioceno superior – Pleistoceno y que corresponden a las rocas de la Formación La Popa, la unidad más joven del Cinturón del Sinú (Duque, 1984 en INGEOMINAS, 2001). Discordante sobre estas rocas se encuentran depósitos cuaternarios de origen marino y continental, tales como depósitos de playas y playones intermareales, sustrato de manglar, dunas y depósitos aluviales, coluviales y de coluvión.

4.3.2 Rasgos estructurales⁸

Estructuralmente el área de Cartagena, al igual que el sector occidental del Caribe colombiano, se presenta compleja como resultado de los esfuerzos del frente de deformación relacionado con la convergencia de las placas Caribe y Suramérica y los procesos de diapirismo de lodos, íntimamente ligados al cinturón del Sinú (Duque, 1984; Vernette et al., 1992; en INGEOMINAS, 2001). Producto de esta tectónica, el casco urbano de Cartagena se ha desarrollado sobre terrenos plegados y localmente fracturados, cuya disposición estructural es difícil de determinar, no sólo por la friabilidad de las rocas del área, sino por el alto grado de urbanización de la ciudad. Entre las estructuras definidas se presentan pliegues, fallas, lineamientos y diaclasas.

Tectónicamente el distrito está influenciado por la Falla Mamonal, que se extiende por 60 km por el área de Mamonal y Arroz Barato; presenta un rumbo N50°E y buzamiento al este de alrededor de 50° a 60°; al suroccidente se interna en la bahía de Cartagena y probablemente pasa entre las islas de Barú y Tierra Bomba. La traza establece un cambio topográfico y controla la extensión de la Formación La Popa del cerro de Albornoz hacia el este y genera fracturamiento y plegamiento en las rocas lodolíticas y areniscas de la Formación Bayunca; su comportamiento es principalmente inverso, pero la disposición de la Formación La Popa sugiere un componente de desplazamiento sinesestral (INGEOMINAS, 2001).

4.3.3 Geomorfología⁹

Las geoformas identificadas en el área de Cartagena deben su origen a factores endogenéticos asociados tanto a los fenómenos de diapirismo de lodos como a los procesos compresivos relacionados con la interacción de las placas Caribe y Suramericana. Como se expuso en la Geología General, hace parte de la Provincia geomorfológica del Sinú, la cual a su vez se ha subdividido en regiones y subregiones geomorfológicas, determinadas, las primeras por el ambiente morfogenético (ambientes morfoestructural, denudacional, depositacional y antrópico) y por procesos morfodinámicos particulares en las segundas (INGEOMINAS, 1999, en INGEOMINAS, 2001).

La modelación actual de las geoformas iniciales son el resultado de la acción de procesos exogenéticos marinos, fluviomarinos y continentales, localmente alterados por la acción del hombre en su afán de ocupar el territorio para su uso habitacional o industrial.

Las unidades identificadas de acuerdo a su expresión topográfica se pueden subdividir en unidades geomorfológicas prominentes y unidades geomorfológicas bajas.

⁹ ÍDEM.
Entre las unidades geomorfológicas prominentes están aquellas cuya expresión es elevada con respecto al nivel del mar. Se incluyen colinas, lomas, plataformas de abrasión elevadas, terrazas marinas, pedimentos, abanicos aluviales y coluviones.

Las unidades geomorfológicas bajas son geoformas asociadas, en general, a sedimentos semiconsolidados, de origen marino, fluvial o coluvial, cuya expresión topográfica es baja con respecto a las zonas de colinas y lomas. Se incluyen en este grupo: llanuras costeras, barras-espigas, playones, llanuras intermareales, llanuras de manglar, planos aluviales, dunas, deltas de flujo de marea, playas, plataformas y bajos arrecifales.

4.3.4 Hidrografía

El entorno hídrico de Cartagena está constituido principalmente por aguas marítimas cuyos sistemas son: La Bahía de Cartagena; la Ciénaga de la Virgen; los caños y lagunas interiores y el mar adyacente. Mientras que las aguas no marítimas están representadas esencialmente por el Canal del Dique.

- La Bahía de Cartagena: Tiene una superficie aproximada de 82 km², una profundidad máxima de 30 metros y media de 16 metros, es uno de los puertos más importantes del Caribe colombiano.
- La Ciénaga de la Virgen: Localizada al norte de la ciudad de Cartagena, tiene una superficie aproximada de 22 km² y una profundidad media de 1,2 m. Drena las aguas de una pequeña cuenca local de unos 500 km². Originalmente la ciénaga evacuaba hacia el mar su exceso de agua en el período lluvioso por varias bocas que se cerraban en la época seca.
- Caños, lagos y lagunas interiores: El sistema de caños y lagos interiores, con una superficie aproximada de 152 hectáreas y longitud de 12 km, comunica los dos cuerpos de agua más importantes de la ciudad: La Bahía de Cartagena y la Ciénaga de la Virgen, formando un sistema intercomunicado entre sí que incluye: Ciénaga Las Quintas, caño de Bazurto, laguna de San Lázaro, laguna de Chambacú, laguna del Cabrero y el caño Juan Angola. Este sistema se comunica con las aguas de la bahía en la ciénaga de San Lázaro a la altura del puente Román y la Laguna de Las Quintas, a la altura del puente de Bazurto.
- Canal del Dique: Es un brazo del río Magdalena que aporta aguas no marítimas a la Bahía de Cartagena, del canal se capta agua para el acueducto de la ciudad. En la actualidad, además de este uso, es utilizado como medio de transporte.

4.3.5 Fisiografía

El paisaje predominante de Cartagena de Indias es el ecosistema marino costero, conformado por el mar Caribe, la Bahía de Cartagena, el Canal del Dique, la Ciénaga de la Virgen, el Parque Nacional Natural Corales del Rosario y San Bernardo y la bahía de Barbacoas, que en su conjunto,

le dan a la ciudad su carácter e identidad (POT, 2002). Aunque también se observa un sistema conformado por cerros aislados que sobresalen en el paisaje, siendo el más representativo el cerro de La Popa:

- **El sistema orográfico:** Constituido por los cerros y lomas de la ciudad. Los más representativos son: El Cerro de La Popa, las Lomas de Marión, Zaragocilla, Albornoz y Cospique.

- **Cerro de La Popa:** Se compone de un macizo central y lomas aisladas con una extensión aproximada de 200 hectáreas, y una altura máxima sobre el nivel del mar de 150 metros. De acuerdo con Ingetec (1995) la vegetación es mesoxerofítica. Esta vegetación y su fauna se encuentran en franco deterioro por los múltiples factores tensionales que hay en la zona.

4.4 Variables Climatológicas

Cartagena, por su situación geográfica, se encuentra bajo la influencia de los desplazamientos norte-sur de la Zona de Convergencia Intertropical (ZCI). Esta zona es un cinturón semicontinuo de bajas presiones localizado entre las regiones subtropicales de los hemisferios norte y sur, con un clima que se caracteriza como tropical semiárido (CIOH, 2007).

La zona presenta tres períodos climáticos marcados por los diferentes porcentajes de precipitación. Un periodo desde diciembre a abril (época seca o verano), con predominio de vientos fuertes del sector norte – noreste con lluvias débiles y escasas; un periodo de transición (de seco a lluvioso) que va desde mayo hasta agosto y un periodo lluvioso (época húmeda o invierno) que cubre los meses de septiembre a noviembre y se caracteriza por presentar vientos débiles, de orientación variable y por un régimen de lluvias abundante.

Algunos estudios señalan que durante el periodo de transición se presenta una época entre los meses de mayo a junio que se caracteriza por la variación de la intensidad y la dirección de los vientos, así como de relativa poca lluvia que se conoce como el veranillo de San Juan.

Durante el periodo de transición se presenta el comienzo de la temporada de huracanes en el área del océano Atlántico norte, golfo de México y mar Caribe, que se extiende desde el mes de junio hasta el mes de noviembre.

El clima en Cartagena, durante el periodo comprendido entre 1943 y 2006, registró una tendencia en la temperatura media multianual que osciló entre los 26,8°C en los primeros meses del año incrementándose hasta los 28,2°C entre mayo y septiembre, para descender a 27,3°C hacia finales del año. De los resultados de este análisis se pudo concluir que no hay cambios significativos en el clima de la ciudad, mostrando una tendencia estable.

La humedad relativa de la región presenta un promedio del 82%, con máximas del 92% y mínimas del 70% (CIOH-Cardique, 1998), las amplitudes diarias son considerables durante los meses secos (50% de día y 98% de noche) y de menos magnitud en los meses de lluvia (70 y 79%) (Invemar, 2003).

La evaporación media anual es de 1.889 mm. Los valores máximos se alcanzan en el primer semestre del año (marzo, con 192 mm); en el segundo semestre se producen bajos valores de evaporación. El valor mínimo llega a 131 mm, en el mes de noviembre (Cardique-CI, 2004).

El brillo solar y la radiación promedio es de 2.575 horas al año, lo que representa una media mensual de 215 horas y una media diaria de 7,15 horas, la distribución dentro del año de la situación promedio mensual sigue una tendencia inversa a la precipitación, alcanzando los valores máximos en el primer semestre del año (281 horas en enero) y los más bajos a mediados del segundo semestre (septiembre con 175 horas), en plena época lluviosa (Cardique-CI, 2004).

4.5 Aspectos Socio-culturales

El 95.4% de la población de Cartagena reside en la cabecera de la ciudad (911.927 habitantes), mientras que el 4.6% restante habita en la zona rural (44.254 habitantes).

Al cierre del año 2011 existían en Cartagena 180 barrios. La Localidad Histórica y del Caribe Norte reúne el mayor número (74, esto es 41% del total), seguida por la Industrial de la Bahía, que agrupa 65 (36%). La Localidad de la Virgen y Turística asienta el menor número de barrios de la ciudad (41), aunque la mayor extensión territorial. El predominio barrial de la Localidad Histórica y del Caribe Norte se refleja en la mayor concentración de población y hogares, así como en la más elevada densificación según se trate del número de personas por hogar o por vivienda.

En el contexto local, se identifican durante las últimas décadas diversas tendencias que inciden en los logros y en las posibilidades del desarrollo humano de la ciudad. Una primera es la rápida expansión poblacional que experimenta Cartagena desde la mitad del siglo XX, induciendo a su vez cambios demográficos que han elevado sostenidamente la demanda por servicios sociales de las personas. Estos cambios resultan de la incidencia de dos procesos: Por una parte, del angostamiento de la pirámide poblacional por la dinámica connatural de envejecimiento de la población, y por otra, los resultados del desplazamiento forzado que cuenta a Cartagena como el principal receptor de población en esta situación en el departamento de Bolívar desde mediados de los años setenta.

Entre 1996 y 2006, Cartagena recibió el 17,9% del total de desplazados en el Caribe colombiano, proporción equivalente al 4,67% de la población de la ciudad en su momento.

4.6 Aspectos Económicos

La actividad económica de Cartagena está localizada en diferentes áreas de la ciudad. La actividad portuaria está localizada en la margen oriental de la bahía interna. La Sociedad Portuaria Regional de Cartagena, Compa (Muelles el Bosque) y Contecar, atienden el mayor volumen de movimiento de carga en contenedores del puerto. Así mismo, existen al menos 57 muelles de las empresas asentadas en el lado oriental de la bahía externa (PNUMA, 2009).

La actividad industrial está localizada en Mamonal y en el corredor de la carretera del Bosque. En el primero están las industrias petroquímicas de la ciudad y en el segundo se encuentran empresas manufactureras y metalmecánicas, así como almacenes de depósito (PNUMA, 2009). La dinámica de la economía local se ha caracterizado por el auge de las actividades industriales, donde se ha profundizado la especialización en tres subsectores: Sustancias químicas, refinerías de petróleo y otros derivados, y minerales no metálicos, los tres poco intensivos en mano de obra (PNUD, 2012).

En el caso del turismo este desarreglo entre producción y empleo es latente: Entre 2004 2008 los ingresos hoteleros crecieron 26.5%, sin embargo el empleo se expandió a una tasa promedio anual de 11.9% (Martínez, 2009 en PNUD, 2012). Esta actividad se encuentra ubicada en el Centro Histórico, en el barrio Bocagrande y en la zona insular de Islas del Rosario y Barú. Un área de expansión del turismo está concentrada en la Zona Norte de la ciudad a lo largo del anillo vial (PNUMA, 2009).

Una tendencia adicional muestra que la brecha de ingresos (en personas y familias cartageneras) no ha permitido reducir la pobreza ni favorecer el acceso equitativo a oportunidades, algunas de estas expresadas en bienes y servicios básicos como la educación y en la posesión de activos, indispensables para salir de múltiples trampas de pobreza.

De acuerdo con PNUD (2012), existen considerables diferencias de ingresos en los extremos de la distribución (décima parte de ingresos más alta versus la más baja). La desigual distribución se refleja igualmente en el plano laboral, un hecho adicional indica que la pobreza está estrechamente asociada a la desigual distribución de las oportunidades, identificadas en las inequidades en el acceso a educación y oportunidades laborales.

Según el programa Red Unidos de la Presidencia de la República, la tasa de desempleo de la población en situación de pobreza extrema de la ciudad fue de 40% al cierre del año 2010 y afecta principalmente a las mujeres y personas en situación de desplazamiento. Igualmente, la distribución de activos esenciales para la población en situación de pobreza y vulnerabilidad, como la tierra, está concentrada en pocos propietarios. Los grandes terrenos urbanizables están en manos del 0.07% del total de propietarios, que son dueños de 1.383.086 m² y mantienen un promedio superior a los 20.000 m² por persona. Igual sucede con los predios de mayor valor en la ciudad, cuya concentración en pocas manos aumentó con la reciente burbuja inmobiliaria iniciada
en 2007, a juzgar por el aumento del coeficiente de Gini14 de los avalúos catastrales a 0.803 en 2010, uno de los más elevados entre las ciudades colombianas (UDE15, 2010).

El grado de concentración de la propiedad es cinco veces mayor que el promedio nacional de las zonas urbanas colombianas para el mismo rango. Estos terrenos de más de 5.000 m2 constituyen el 8% del área urbana distrital y por su ubicación pueden convertirse en reserva para la construcción comercial y de vivienda de estratos bajos y medios, donde existe un fuerte déficit de vivienda. De hecho, de acuerdo con Camacol, la demanda de vivienda en Cartagena aumentará hasta 2015 a razón de 14.000 nuevas unidades cada año, lo que evidencia la necesidad de mejorar el acceso a activos de la población.

Así, mientras más se concentra el ingreso, la población excluida debe recurrir a la explotación irracional de los recursos naturales y a zonas asociadas con alto riesgo y deterioro ambiental, como el corredor urbano alrededor de la Ciénaga de la Virgen y el cerro de La Popa (PNUMA, 2009).

Por su parte, la UDE (2010) señala la concentración de micro-negocios en los barrios con mejores condiciones de vida, a diferencia de la menor presencia de este tipo de iniciativas en los barrios con mayores niveles de pobreza, cuyos propietarios acuden con frecuencia a mecanismos de financiación onerosos y con alto riesgo para la integridad personal. Según López y Sáenz (2009), la mayor movilidad positiva - es decir, aquellas que aumentaron de tamaño- se presentó en el comercio al por menor de productos nuevos de consumo doméstico en establecimientos especializados, insertos en mercados de bienes y servicios con demandas dinámicas.

Este conjunto de hechos relacionados con la cuarta tendencia de concentración de activos y oportunidades evidencian la necesidad de mejorar la regulación distrital para mejorar la inserción laboral y la generación de ingresos de los grupos sociales en mayor desventaja, así como las coberturas y calidad de la educación.

Una última tendencia muestra la riesgosa coexistencia de distintas vulnerabilidades con tensiones en el desarrollo urbano de Cartagena los cuales, en algunos casos, han aumentado la incidencia de la pobreza, y en otros, retrasado los logros en las múltiples dimensiones del desarrollo humano local. Estas vulnerabilidades las recoge PNUD (2011) en un índice que combina debilidades en capital humano (tasa de alfabetización y personas en edad de trabajar por hogar), capacidad institucional (capacidad administrativa y desempeño fiscal), conflictos (homicidios, masacres, número de desplazados, número de víctimas de violencia política y área de conflictos de coca), rasgos sociodemográficos (promedio de adultos mayores de 64 años por hogar y número promedio de niños de 5 años por hogar), ambientales (de vulnerabilidad climática), y por capacidad económica (Gini de tierras e índice de ingresos).

De acuerdo con PNUD, los resultados muestran que existe una enorme brecha de vulnerabilidad entre un municipio típico (en este caso descrito por la mediana) y Cartagena, a favor de esta

14 Coeficiente de Gini: Este coeficiente es una medida de la concentración del ingreso en una sociedad, en un determinado periodo, toma valores entre 0 y 1. Cuando se acerca a 0 indica que todos los individuos tienen el mismo ingreso y 1 indica que el ingreso está fuertemente concentrado. datos.bancomundial.org

15 UDE: Unidad de Desarrollo Económico.
última. Se destaca una paradoja: La vulnerabilidad de Cartagena por violencia es mayor a pesar de ser tres veces menos rural que el municipio representativo en Colombia, y que la violencia suele concentrarse en este último tipo de localidades. Más importante aún, la situación de vulnerabilidad más pronunciada en Cartagena es originada en la violencia, lo institucional y económico, y en menor grado lo ambiental, señalando este conjunto de factores que deben priorizarse en el planteamiento y ejecución de una política distrital orientada a disminuir la vulnerabilidad.

En este sentido se necesita en primera instancia, ampliar los conocimientos de los asentamientos precarios y de ordenamiento territorial con miras a procurar un desarrollo humano sostenible.
5. MARCO INSTITUCIONAL Y ACTORES CLAVE

La Ley 1523 de 2012, del SNGRD, modificó la estructura del marco institucional que soporta la Gestión del Riesgo en el país. Esta nueva estructura, como se observa en la ilustración, cuenta con la dirección del Presidente de la República, seguido en las entidades territoriales por los Gobernadores y los Alcaldes, siendo estos responsables de la formulación de los planes de gestión del riesgo y de poner en marcha los procesos en los territorios.

Ilustración 1. Marco institucional del Sistema Nacional para la Gestión del Riesgo

El SNGRD crea además, nuevas instancias de orientación y coordinación que son los instrumentos clave para la articulación de la política en los ámbitos gubernamentales y de éstos con los demás actores que desde el territorio son los promotores de los planes de gestión del riesgo y los responsables de su implementación. Dentro de estas instancias se encuentran el Consejo Nacional para la Gestión del Riesgo –CNGR- y la Unidad Nacional para la Gestión del Riesgo de Desastres –UNGRD-, así como tres comités encargados de impulsar los procesos: Conocimiento del Riesgo, Reducción del Riesgo y Manejo de Desastres.
Siguiendo los lineamientos de la Ley 1523 de 2012, Ley del Sistema Nacional para la Gestión del Riesgo, se creó el Consejo Distrital de Gestión del Riesgo de Cartagena mediante el decreto 1280 del 30 de abril de 2012, quedando conformado de la siguiente manera:

1. El Alcalde Mayor o su delegado, quien lo preside y convoca.
2. El secretario del Interior y Convivencia Ciudadana del Distrito.
3. El Director del DADIS quien podrá delegar en el Subdirector o quien haga sus veces.
4. El Secretario de Infraestructura.
5. El Asesor o Profesional encargado de la coordinación de la Gestión del Riesgo.
6. Los Directores o Gerentes de las entidades de servicios públicos o sus delegados.
8. El Director Seccional Defensa Civil Colombiana.
9. El Director Seccional de la Cruz Roja.
10. El Comandante del Cuerpo Oficial de Bomberos de Cartagena.
11. El Comandante de la Policía Metropolitana de Cartagena o su delegado.
13. El Director General de Cardique.

A continuación se presentan los actores clave para la formulación y posterior implementación del Plan Distrital de Gestión del Riesgo de Cartagena de Indias:
<table>
<thead>
<tr>
<th>ACTORES RELACIONADOS CON EL PLAN DISTRITAL DE GESTIÓN DEL RIESGO</th>
<th>ROLES</th>
</tr>
</thead>
</table>
| Secretaría de planeación distrital | • Incorporar la gestión del riesgo en los instrumentos de planificación.
• Generar estudios técnicos Incluyendo la identificación de zonas de amenazas y riesgos, entre otros.
• Manejo de Cartografía. |
| Corporación Autónoma Regional del Canal del Dique –CARDIQUE–
Establecimiento Público Ambiental –EPA– Cartagena | • Apoyar a las entidades territoriales en los estudios necesarios para el conocimiento y la reducción del riesgo, integrándolos a los planes de ordenamiento de cuencas, de gestión ambiental, de ordenamiento territorial y de desarrollo.
• Apoyar las labores de gestión que corresponden a la sostenibilidad ambiental del territorio y a la implementación de los procesos de gestión del riesgo.
• Propender por la articulación de las acciones de adaptación al cambio climático y las de gestión del riesgo de desastres en su territorio.
• Apoyar a las entidades territoriales en la implementación de los procesos de gestión del riesgo según su competencia.
• Elaborar estudios técnicos de riesgos.
• Elaborar Cartografía temática y de riesgos a escala regional.
• Elaborar estudios y diseños de obras de mitigación. |
| Secretaría de educación | • Elaboración de pensum académicos que incluyan la gestión del riesgo.
• Formulación de los planes escolares de gestión del riesgo. |
| Secretaría de infraestructura | • Elaboración de estudios técnicos de amenazas, vulnerabilidad y riesgos.
• Elaborar estudios y diseños de obras de mitigación. |
| DIMAR | • Elaboración de estudios técnicos.
• Cartografía.
• Generar y distribuir información oceanográfica. |
| IGAC (seccional de catastro) | • Elaborar estudios geográficos, agrológicos y catastrales.
• Cartografía oficial, básica y temática.
• Información predial. |
| IDEAM | • Estudios y zonificación de amenazas.
• Generar y distribuir Información hidrometeorológica. |
| Servicio Geológico Colombiano | • Elaborar y suministrar Información Geológica.
• Elaboración de estudios y de cartografía.
• Encargados de la evaluación y monitoreo de la amenaza sísmica. |
| Universidades | • Investigación en temas técnicos y socioeconómicos relacionados con la gestión del riesgo.
• Tesis de grado en gestión del riesgo sobre estudios técnicos específicos. |
| Entidades de servicios públicos | • Estudios técnicos de riesgos.
• Diseño y construcción de obras de mitigación. |
| Actores responsables Manejo de Desastres:
• Consejo Distrital para la Gestión del Riesgo
• Secretaría del interior
• Cruz Roja Colombiana
• Defensa Civil Colombiana
• Bomberos
• Secretaría de participación y desarrollo social
• Fuerzas militares y de policía distrito | • Formular planes para la preparación y atención de emergencias y desastres, así como planificar e implementar las fases de rehabilitación y reconstrucción post desastres. |
| Sociedad civil | • Responsables de la gestión del riesgo. Ley 1523 de 2012.
• Precaución, solidaridad, autoprotección.
• Observación, experiencia local. |
6. IDENTIFICACIÓN Y ANÁLISIS DE LOS FACTORES DE RIESGO

El análisis del riesgo apunta a estimar los posibles efectos y consecuencias de fenómenos naturales extremos en un determinado grupo poblacional y en sus bases de vida. Se trata tanto de efectos a nivel social, como también económico y ambiental.

Se consideran como factores de riesgo la amenaza y la vulnerabilidad. Para que suceda un evento que pueda producir un desastre debe haber una amenaza, que es un fenómeno de origen natural o antrópico que cause daño en un momento y lugar determinado, y condiciones desfavorables en una comunidad, las cuales se denominan vulnerabilidades, estos dos elementos son fundamentales para el análisis del riesgo y deben entenderse como actividades inseparables; es decir, no se puede hacer un análisis de la vulnerabilidad sin hacer otro de la amenaza y viceversa (GTZ, 2004).

La identificación y el análisis de los factores de riesgo se efectuaron con base en los lineamientos que se encuentran en la Guía Metodológica para la Elaboración de Planes Departamentales para la Gestión del Riesgo, desarrollada por el Programa de las Naciones Unidas para el Desarrollo, la Unidad Nacional para la Gestión del Riesgo de Desastres y la Unión Europea.

6.1 Antecedentes Históricos

Se han registrado un gran número de eventos en el distrito de Cartagena que produjeron desastres, con el fin de tener una aproximación de la cronología de los mismos, se consultaron las bases de datos de varias fuentes como el Plan de Ordenamiento Territorial –POT– de Cartagena, la Oficina Distrital para la Gestión del Riesgo, Parque Nacional Natural Corales del Rosario y San Bernardo, la UNGRD y DesInventar, entre otros.

De acuerdo con el POT de Cartagena y con los datos de la Oficina Distrital para la Gestión del Riesgo, los desastres, emergencias y accidentes que se recuerdan en los últimos años son los siguientes:
Tabla 3. Cronología de eventos Cartagena de Indias D.T.C

<table>
<thead>
<tr>
<th>EVENTO/FECHA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitio de Cartagena/1821</td>
<td>Sitio de Cartagena durante 4 meses por Pablo Morillo.</td>
</tr>
<tr>
<td>Mar de leva/1930</td>
<td>Retroceso notable en las playas de Marbella.</td>
</tr>
<tr>
<td>Mar de leva/1940</td>
<td>Afectación de las playas de Bocagrande entre las calles 8 a 11.</td>
</tr>
<tr>
<td>Mar de leva/1943</td>
<td>Afectación del malecón de la Andian.</td>
</tr>
<tr>
<td>Accidente aéreo/enero 1966</td>
<td>Accidente de un vuelo de Avianca a 1300 metros de la pista del aeropuerto, sobrevivieron 8 personas de los 60 pasajeros y de los 4 tripulantes.</td>
</tr>
<tr>
<td>Mar de leva/1966</td>
<td>Afectación del malecón de la Andian, comunicación directa del mar y la bahía en Bocagrande cerca del edificio de Seguros Bolívar, comunicación directa del mar y la Laguna del Cabrero.</td>
</tr>
<tr>
<td>Incendio/1969</td>
<td>Incendio del antiguo mercado de Bazurto.</td>
</tr>
<tr>
<td>Sismo/1975</td>
<td>Sin datos de afectación.</td>
</tr>
<tr>
<td>Riesgo tecnológico/1975</td>
<td>Fuga de amoníaco en Amocar.</td>
</tr>
<tr>
<td>Incendio/1983</td>
<td>Incendio de bodega en el sector del Bosque.</td>
</tr>
<tr>
<td>Mar de leva/1987</td>
<td>Afectación del acueducto y retroceso de playas de La Boquilla, afectación del malecón de la Andian.</td>
</tr>
<tr>
<td>Inundación/1987</td>
<td>Inundación sector Villa Rosita.</td>
</tr>
<tr>
<td>Huracán/octubre 1988</td>
<td>El huracán Joan atravesó la península de La Guajira como tormenta tropical, se convirtió posteriormente en huracán clase 1 desplazándose por el sur del Archipiélago de San Andrés y Providencia. Afectó al municipio de Carmen de Bolívar, ocasionando fuertes inundaciones, dejando cinco muertos y novecientas viviendas afectadas.</td>
</tr>
<tr>
<td>Mar de leva/1993</td>
<td>Erosión intensa en Crespo, afectación del terraplén del anillo vial.</td>
</tr>
<tr>
<td>Fenómeno del Niño/1993</td>
<td>Inundaciones, sin datos adicionales.</td>
</tr>
<tr>
<td>Movimientos en masa/dic 1993-nov 1994</td>
<td>Deslizamientos en el sector del Nuevo Bosque, Las Colinas y Manzanares (Cerro Marión) con 41 casas destruidas y desestabilización de la ladera por excavaciones hechas sin control.</td>
</tr>
<tr>
<td>Riesgos tecnológicos/noviembre 1994</td>
<td>Escape de 20 barriles de Fuel Oil de una tubería de venta de producto en tierra que llegó a la bahía.</td>
</tr>
<tr>
<td>Riesgos tecnológicos/diciembre 1994</td>
<td>Derrame de 100 barriles de aceite usado de un remolcador cerca de pasacaballos.</td>
</tr>
<tr>
<td>Riesgos tecnológicos/diciembre 1995</td>
<td>Escape de amoníaco de industria de alimentos, con afectación respiratoria para la comunidad aledaña.</td>
</tr>
<tr>
<td>Temporada invernal/1995</td>
<td>Efectos de la temporada de huracanes, sin dato adicionales.</td>
</tr>
<tr>
<td>Riesgos tecnológicos/abril 1996</td>
<td>Incendio en dos almacenes por bombas, sin datos adicionales.</td>
</tr>
</tbody>
</table>
Hasta mediados de la década de 1990 no se disponía en América Latina, ni en la Subregión Andina de información sistemática sobre la ocurrencia de desastres cotidianos de pequeño y mediano impacto. A partir de 1994 se empezó a construir un marco conceptual y metodológico común por parte de grupos de investigadores, académicos y actores institucionales, agrupados en la Red de Estudios Sociales en Prevención de Desastres en América Latina (LA RED), que concibieron un sistema de adquisición, consulta y despliegue de información sobre desastres de pequeños, medianos y grandes impactos, con base en datos pre-existentes, fuentes hemerográficas y reportes de instituciones en nueve países de América Latina. Esta concepción, metodología y
herramienta de software desarrolladas se denominan Sistema de Inventario de Desastres – DesInventar–.

El desarrollo de DesInventar, con una concepción que permite ver a los desastres desde una escala espacial local (municipio o equivalente), facilita diálogos para gestión de riesgos entre actores e instituciones y sectores, y a su vez con gobiernos municipales y nacionales.

La mayor parte de esta información histórica tiene fechas exactas de ocurrencia, así como impacto y área afectada, a la fecha (mayo de 2013), existen 291 registros para Cartagena D.T.C y corresponden al periodo comprendido entre noviembre de 1932 y noviembre de 2011\(^{16}\) (www.desinventar.org). Cabe aclarar que esta cronología es incompleta, ya que algunos eventos no llegaron a ser noticia a nivel nacional y sólo permanecen en la memoria colectiva de la población local.

Ilustración 2. Tipo de eventos reportados y porcentaje correspondiente para Cartagena D.T.C.

![Ilustración 2. Tipo de eventos reportados y porcentaje correspondiente para Cartagena D.T.C.](http://online.desinventar.org/desinventar/#COL-1250694506-colombia_inventario_historico_de_desastres)

\(^{16}\) http://online.desinventar.org/desinventar/#COL-1250694506-colombia_inventario_historico_de_desastres
Al realizar el primer análisis de la información cronológica, se concluye que los hechos más frecuentes en el distrito de Cartagena de Indias corresponden a los eventos naturales de origen hidrometeorológico, con un porcentaje de 50.1%, siendo los eventos de mayor importancia para Cartagena las inundaciones (22.3%) y los deslizamientos (10.0%).

Este análisis se corresponde con los datos que se grafican en la Ilustración 3, en el que se muestra el tipo de eventos, así como el valor en pérdidas económicas por cada uno de ellos:
Ilustración 3. Tipo de eventos y valor en pérdidas reportados para Cartagena D.T.C.

6.2 Análisis de Amenazas

Amenaza: “Peligro latente de que un evento físico de origen natural, o causado, o inducido por la acción humana de manera accidental, se presente con una severidad suficiente para causar pérdida de vidas, lesiones o impactos en la salud, así como también daños y pérdidas en los bienes, la infraestructura, los medios de sustento, la prestación de servicios y los recursos ambientales” (Ley 1523 de 2012).

Las amenazas a las que está expuesto el distrito fueron identificadas a partir de la revisión de información secundaria que fue recopilada en la primera fase de la formulación del plan y posteriormente fue validada y precisada mediante talleres, en los que se contó con la participación de actores clave, que permitieron tener una visión integral del territorio. Para tal fin se realizaron cuatro (4) talleres, uno por localidad: Histórica y del Caribe, de la Virgen y Turística e Industrial y de la Bahía, así como un taller para las zonas rural e insular.

El análisis se realizó teniendo en cuenta los siguientes principios (GTZ, 2010):

- Se investigaron las características, tipo e intensidad de la amenaza y el territorio afectado.
- Se consideraron tanto los eventos del pasado, como la probabilidad de una nueva ocurrencia, investigando los procesos generadores de amenazas socio-naturales, sobre todo aquellas asociadas a procesos de desarrollo, por ejemplo: Erosión acelerada por prácticas agrícolas inadecuadas.
- Se combinó la información científica disponible con los conocimientos y las experiencias vividas por la sociedad expuesta, incluyendo población, instituciones públicas y sector privado entre otros.

Ilustración 4. Variables utilizadas para el análisis de las amenazas

6.2.1 Tipos de amenazas

En el marco de los aspectos físico-ambientales (geología, rasgos estructurales, geomorfología, hidrografía, fisiografía), variables climatológicas, aspectos socio-culturales y económicos del distrito de Cartagena, se producen diferentes fenómenos naturales, socionaturales y antrópicos, con distinta potencialidad destructiva y nivel de recurrencia que constituyen una amenaza para la población y sus medios de vida.

Los planes de gestión del riesgo se constituyen en una herramienta para priorizar programas y ejecutar acciones en el marco de los procesos de conocimiento del riesgo, reducción del riesgo y manejo del desastre, de igual manera se debe realizar la priorización de las amenazas que se identifiquen en el distrito, teniendo en cuenta su frecuencia, intensidad y el territorio afectado.

La identificación del tipo de amenazas existentes, corresponde a una de las actividades primordiales para el análisis del riesgo dentro de la elaboración del Plan Distrital de Gestión del Riesgo de Cartagena de Indias, pues de esta manera se tiene un panorama general del distrito frente a situaciones internas o externas que ponen en peligro la vida, infraestructura y bienes de la población. Para la identificación de las amenazas es necesario tener en cuenta la clasificación de las mismas, como se indica en la siguiente ilustración:

Ilustración 5. Clasificación de los tipos de amenazas

En el territorio del distrito de Cartagena, de acuerdo con sus características geográficas, fisiográficas y climatológicas, se producen diversos fenómenos naturales y antrópicos, con distinto potencial de destrucción y nivel de recurrencia que constituyen una amenaza para su población y sus medios de vida: Huracanes, vendavales, inundaciones, mar de leva, ceráunica (rayos), sismos, tsunami, remoción en masa, erosión costera, diapirismo de lodos, incendios forestales, degradación de recursos naturales, contaminación, aglomeraciones en público, redes eléctricas, accidentes aéreos, derrames, fugas, explosiones e incendios estructurales.

Los huracanes son una de las amenazas de origen hidrometeorológico que pueden afectar a Cartagena de Indias, la siguiente ilustración presenta un ejemplo de la magnitud de este tipo de fenómenos:

Ilustración 6. El huracán Iván de la temporada 2004, ocupó totalmente la porción del Caribe comprendida entre la costa suramericana y la isla Hispaniola (Haití y República Dominicana).

Fuente: NASA. www.nasa.gov

Dentro de las amenazas de origen tecnológico que pueden afectar al distrito se encuentran los derrames, las fugas, las explosiones y los incendios. Este tipo de eventos, aunque son poco frecuentes, pueden causar una gran afectación como lo fue el caso que se presentó el 20 de abril de 2010. La explosión de una plataforma petrolera de la British Petroleum –BP-, que operaba en el Golfo de México, causó la muerte de once (11) trabajadores y el derrame de más de 4,9 millones de barriles de petróleo al mar, el evento fue catalogado como el desastre ecológico más grande en la historia de los Estados Unidos.
Ilustración 7. Las imágenes muestran la explosión de la plataforma petrolera de la BP. Golfo de México, el 20 de abril de 2010.

Fuente: www.el-nacional.com
Fuente: www.dinero.com

Nota Aclaratoria:

No se realizó la identificación de amenazas de origen antrópico relacionadas con terrorismo, vandalismo, sabotaje y violencia, aunque son asuntos de suma importancia para cualquier territorio, se trata de temas de Seguridad Democrática para los cuales existe una Política Nacional de Seguridad y Convivencia Ciudadana de la Presidencia de la República: “La Política Nacional de Seguridad y Convivencia Ciudadana es el resultado de un proceso de construcción y diálogo interinstitucional que busca proteger a los ciudadanos en su vida, integridad, libertad y patrimonio económico a través de la reducción y la sanción del delito, el repudio a la violencia y la promoción de la convivencia. La política se desarrolla a través de siete ejes estratégicos de los cuales cinco, son centrales: Prevención Social y Situacional; Presencia y Control Policial; Justicia, Víctimas y Resocialización; Cultura de la Legalidad y Convivencia, y Ciudadanía Activa y Responsable. Los otros ejes corresponden a temas transversales que soportan la política en su conjunto: Sistemas de Información, y Estudio de Políticas Públicas y Desarrollos Normativos”.
La Tabla 4 resume el tipo de amenazas identificadas para el distrito:

Tabla 4. Tipo de amenazas identificadas por localidades, zona rural y zona insular, Cartagena de Indias

<table>
<thead>
<tr>
<th>TIPOS DE AMENAZAS</th>
<th>LOCALIDAD 1 HISTÓRICA Y DEL CARIBE</th>
<th>LOCALIDAD 2 DE LA VIRGEN Y TURÍSTICA</th>
<th>LOCALIDAD 3 INDUSTRIAL Y DE LA BAHÍA</th>
<th>ZONA RURAL CORREGIMIENTOS CONTINENTALES</th>
<th>ZONA INSULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATURALES: HIDROMETEOROLÓGICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huracanes y vendavales</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Inundaciones</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Mar de leva</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cerámica</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>NATURALES: GEOLÓGICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sismos</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tsunami</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Remoción en masa</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Erosión costera</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Diapirismo de lodos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SOCIO-NATURALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incendios forestales</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Degradación RN</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ANTRÓPICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminación</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Ágomeraciones de público</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Redes eléctricas</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Accidente aéreo</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TECNOLÓGICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derrames</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fugas</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Explosiones</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Incendios</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
6.2.2 Frecuencia

¿Cada cuánto se presenta fenómenos amenazantes en el distrito?

Para enfocar el análisis de esta variable, se contó con información disponible sobre las amenazas y la cronología de los desastres ocurridos (ver capítulo 6.1 Antecedentes Históricos), teniendo en cuenta además la memoria histórica de la comunidad y de los demás actores del territorio.

Los datos obtenidos permitieron considerar tanto los eventos del pasado como la recurrencia de los mismos. Una de las herramientas utilizadas fue Desinventar\(^\text{17}\), así como la información consolidada de emergencias de la Unidad Nacional para la Gestión del Riesgo de Desastres (www.sigpad.gov.co).

En la siguiente tabla se presenta la descripción del nivel de frecuencia de las amenazas:

<table>
<thead>
<tr>
<th>FRECUENCIA</th>
<th>DESCRIPCIÓN</th>
<th>VALOR</th>
<th>FRECUENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTA</td>
<td>Evento que se presenta más de una vez en el año o por lo menos una vez en un periodo de uno a tres años.</td>
<td>3</td>
<td>ALTA</td>
</tr>
<tr>
<td>MEDIA</td>
<td>Evento que se presenta por lo menos una vez en un periodo de tiempo entre 3 y 5 años.</td>
<td>2</td>
<td>MEDIA</td>
</tr>
<tr>
<td>BAJA</td>
<td>Evento que se presenta al menos una vez en un periodo de tiempo entre 5 a 20 años.</td>
<td>1</td>
<td>BAJA</td>
</tr>
</tbody>
</table>

6.2.3 Intensidad

¿Qué tan severa es la afectación por la ocurrencia de fenómenos en el distrito?

El término hace referencia a la medida cuantitativa y cualitativa de la severidad de un fenómeno en un sitio específico (Guía metodológica para la elaboración de Planes Departamentales para la Gestión del Riesgo. PNUD, 2012).

En la siguiente tabla se presenta la descripción de las características para determinar el nivel de intensidad de un fenómeno:

\(^\text{17}\) Desinventar: Herramienta conceptual y metodológica para la construcción de bases de datos de pérdidas, daños o efectos ocasionados por emergencias o desastres, que contienen información desde una escala local y departamental. www.desinventar.org
Tabla 6. Intensidad

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>VALOR</th>
<th>INTENSIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muchas personas fallecidas, gran cantidad de personas lesionadas, afectación de grandes extensiones del territorio, afectaciones graves en los recursos naturales, suspensión de servicios públicos básicos y de actividades económicas durante varios meses, pérdidas económicas considerables, graves afectaciones en la infraestructura distrital y un gran número de viviendas destruidas.</td>
<td>3</td>
<td>ALTA</td>
</tr>
<tr>
<td>Pocas personas fallecidas, varias personas lesionadas de mínima gravedad, afectación moderada del territorio, afectación moderada de los recursos naturales, afectaciones moderadas en las redes de servicios públicos, suspensión temporal de actividades económicas, afectación moderada en la infraestructura distrital, pocas viviendas destruidas y varias viviendas averiadas.</td>
<td>2</td>
<td>MEDIA</td>
</tr>
<tr>
<td>Sin personas fallecidas, muy pocas personas lesionadas de mínima gravedad, mínima afectación en el territorio, sin afectación en las redes de servicios públicos, no hay interrupción en las actividades económicas, sin afectación en infraestructura distrital, no hay daños en viviendas.</td>
<td>1</td>
<td>BAJA</td>
</tr>
</tbody>
</table>

6.2.4 Territorio afectado

¿Qué extensión del territorio se afecta?

El territorio es el elemento físico compuesto por las porciones de tierra, los ríos, los mares, golfoes, puertos, canales, bahías, entre otros, que se encuentran dentro del territorio, los cuales presentan diferentes afectaciones frente a la ocurrencia de fenómenos amenazantes (Guía metodológica para la elaboración de Planes Departamentales para la Gestión del Riesgo. PNUD, 2012).

En la tabla 7 se presenta la descripción de los niveles de afectación del territorio, análisis que se realizó para cada una de las amenazas identificadas:

Tabla 7. Territorio Afectado

<table>
<thead>
<tr>
<th>TERRITORIO AFECTADO</th>
<th>VALOR</th>
<th>TERRITORIO AFECTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Más del 80% de su territorio se encuentra afectado</td>
<td>3</td>
<td>ALTA</td>
</tr>
<tr>
<td>Entre el 50% y 80% del territorio presenta afectación</td>
<td>2</td>
<td>MEDIA</td>
</tr>
<tr>
<td>Menos del 50% del territorio presenta algún tipo de afectación</td>
<td>1</td>
<td>BAJA</td>
</tr>
</tbody>
</table>

6.2.5 Calificación de las amenazas

Para cada una de las amenazas identificadas se determinó el nivel de intensidad, frecuencia y afectación del territorio, teniendo en cuenta los valores obtenidos en cada una de las variables fue posible determinar el nivel de amenaza utilizando la siguiente ecuación:

\[\text{Amenaza (A)} = \text{intensidad (I)} + \text{frecuencia (F)} + \text{territorio afectado (T)} \]

En la Tabla 8 se presenta los intervalos de calificación de las amenazas, con base en la ecuación expuesta:

<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>CALIFICACIÓN DE LA AMENAZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Baja</td>
</tr>
<tr>
<td>4-6</td>
<td>Media</td>
</tr>
<tr>
<td>7-9</td>
<td>Alta</td>
</tr>
</tbody>
</table>

En la Tabla 9, se presenta el consolidado de las amenazas identificadas y priorizadas para el distrito de Cartagena, con su calificación correspondiente de acuerdo a la valoración obtenida en alta, media o baja:
Tabla 9. Consolidado de amenazas por localidad, zona urbana y zona insular, Cartagena de Indias

<table>
<thead>
<tr>
<th>TIPOS DE AMENAZAS</th>
<th>LOCALIDAD 1 HISTÓRICA Y DEL CARIBE</th>
<th>LOCALIDAD 2 DE LA VIRGEN Y TURÍSTICA</th>
<th>LOCALIDAD 3 INDUSTRIAL Y DE LA BAHÍA</th>
<th>ZONA RURAL CORREGIMIENTOS CONTINENTALES</th>
<th>ZONA INSULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATURALES: HIDROMETEOROLÓGICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huracanes y vendavales</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
</tr>
<tr>
<td>Inundaciones</td>
<td>Alta</td>
<td>Alta</td>
<td>Alta</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Mar de leva</td>
<td>Media</td>
<td>-</td>
<td>Media</td>
<td>Media</td>
<td>Alta</td>
</tr>
<tr>
<td>Ceráunica</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Baja</td>
</tr>
<tr>
<td>NATURALES: GEOLÓGICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sismos</td>
<td>Baja</td>
<td>Baja</td>
<td>Baja</td>
<td>Baja</td>
<td>Baja</td>
</tr>
<tr>
<td>Tsunami</td>
<td>Baja</td>
<td>-</td>
<td>Baja</td>
<td>Baja</td>
<td>Baja</td>
</tr>
<tr>
<td>Remoción en masa</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
</tr>
<tr>
<td>Erosión costera</td>
<td>Alta</td>
<td>-</td>
<td>Baja</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Diapirismo de lochos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Media</td>
<td>Media</td>
</tr>
<tr>
<td>SOCIO-NATURALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incendios forestales</td>
<td>-</td>
<td>Baja</td>
<td>-</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Degradación RN</td>
<td>-</td>
<td>-</td>
<td>Media</td>
<td>Media</td>
<td>-</td>
</tr>
<tr>
<td>ANTRÓPICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminación</td>
<td>-</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>-</td>
</tr>
<tr>
<td>Aglomeraciones de público</td>
<td>Alta</td>
<td>Alta</td>
<td>Media</td>
<td>Media</td>
<td>-</td>
</tr>
<tr>
<td>Redes eléctricas</td>
<td>-</td>
<td>Media</td>
<td>-</td>
<td>-</td>
<td>Media</td>
</tr>
<tr>
<td>Accidente aéreo</td>
<td>-</td>
<td>Baja</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TECNOLÓGICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derrames</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
</tr>
<tr>
<td>Fugas</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Explosiones</td>
<td>-</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>-</td>
</tr>
<tr>
<td>Incendios</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
</tr>
</tbody>
</table>

Las principales amenazas que se presentan en el distrito de Cartagena, considerando su frecuencia, intensidad y territorio afectado son:

- Amenazas naturales de origen hidrometeorológico: Con una calificación de amenaza alta se identificaron las inundaciones y con una calificación de amenaza media los huracanes, los vendavales y el mar de leva.
Amenazas naturales de origen geológico: Con una calificación alta se identificó la erosión costera, mientras que la remoción en masa y el diapirismo de lodos obtuvieron una calificación de amenaza media.

Amenazas socio-naturales: Con una calificación media se consideró la degradación de recursos naturales.

Amenazas antrópicas: Con una calificación de amenaza media-alta se encuentra la aglomeración en público, seguida por una calificación de amenaza media para la contaminación y los eventos asociados con redes eléctricas.

Amenazas tecnológicas: Los fenómenos antrópicos de origen tecnológico como derrames, fugas, explosiones e incendios, fueron calificados con un nivel de amenaza medio.

6.3 Análisis de Vulnerabilidad

Vulnerabilidad: “Susceptibilidad o fragilidad física, económica, social, ambiental o institucional que tiene una comunidad de ser afectada o de sufrir efectos adversos en caso de que un evento físico peligroso se presente. Corresponde a la predisposición a sufrir pérdidas o daños de los seres humanos y de sus medios de subsistencia, así como de sus sistemas físicos, sociales, económicos y de apoyo que pueden ser afectados por eventos físicos peligrosos” (Ley 1523 de 2012).

Para el análisis de la vulnerabilidad se realizó la identificación y caracterización de los elementos que se encuentran expuestos en el distrito y los efectos desfavorables de una amenaza. Para lo cual se combinó información estadística y científica con el conocimiento de la sociedad civil y de los demás actores del territorio.

Es un factor esencial para el análisis del riesgo en el territorio, dado que implica el estudio de efectos de un fenómeno sobre los elementos y/o componentes necesarios para el funcionamiento de la sociedad, existen muchas variables de vulnerabilidad que pueden considerarse, para la formulación del plan se tuvieron en cuenta aquellas que involucran aspectos económicos, sociales, ambientales y físicos; la Ilustración 4 presenta una breve descripción de cada una de ellas.

Tener claridad acerca del panorama de la vulnerabilidad permite definir medidas más apropiadas y efectivas para reducir el riesgo.
6.3.1 Vulnerabilidad física

Está relacionada con la calidad o tipo de material utilizado y el tipo de construcción de las viviendas, establecimientos económicos (comerciales e industriales) y de servicios (salud, educación, instituciones públicas) e infraestructura socioeconómica (centrales hidroeléctricas, vías, puentes y sistemas de riego), para asimilar los efectos de los fenómenos que constituyen una amenaza (Guía metodológica para la elaboración de Planes Departamentales para la Gestión del Riesgo. PNUD, 2012).
Tabla 10. Variables de evaluación de vulnerabilidad física

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor de Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baja</td>
</tr>
<tr>
<td>Antigüedad de la edificación</td>
<td>Menos de 5 años</td>
</tr>
<tr>
<td>Materiales de construcción</td>
<td>Estructura con materiales de muy buena calidad, adecuada técnica constructiva y buen estado de conservación</td>
</tr>
<tr>
<td>Cumplimiento de la normatividad vigente</td>
<td>Se cumple de forma estricta con las leyes</td>
</tr>
<tr>
<td>Características geológicas y tipo de suelo</td>
<td>Zonas que no presentan problemas de estabilidad en el terreno, con buena cobertura vegetal</td>
</tr>
<tr>
<td>Localización de las edificaciones con respecto a zonas de retiro a fuentes de agua y zonas de riesgo</td>
<td>Muy alejada</td>
</tr>
</tbody>
</table>

6.3.2 Vulnerabilidad económica

Constituye el acceso que tiene la población de un determinado conglomerado urbano a los activos económicos (tierra, infraestructura de servicios, empleo, entre otros) y se refleja en la capacidad de responder de manera adecuada ante un desastre. Está determinada por el nivel de ingresos o la capacidad de satisfacer las necesidades básicas por parte de la población (Guía metodológica para la elaboración de Planes Departamentales para la Gestión del Riesgo. PNUD, 2012).

La población en situaciones de pobreza y de bajos niveles de ingresos, a los que no le es posible satisfacer sus necesidades básicas, constituye el sector más vulnerable de la sociedad; la misma que por falta de acceso a viviendas en zonas seguras, invaden áreas ubicadas en zonas no aptas para la construcción, estos “desarrollos” carecen de servicios básicos elementales y presentan precarias condiciones sanitarias; de igual manera, esta población carece de una buena alimentación y del acceso a servicios de salud y de educación. Dichas carencias, condicionan la capacidad de preparación y de respuesta ante los peligros de su entorno y en caso de ser afectados por un fenómeno adverso el daño será mayor, así como su capacidad de recuperación.
Tabla 11. Variables de análisis de vulnerabilidad económica

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor de Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baja</td>
</tr>
<tr>
<td>Situación de pobreza y seguridad alimentaria</td>
<td>Población sin pobreza y con seguridad alimentaria</td>
</tr>
<tr>
<td>Nivel de ingresos</td>
<td>Alto nivel de ingresos</td>
</tr>
<tr>
<td>Acceso a los servicios públicos</td>
<td>Total cobertura de servicios públicos básicos</td>
</tr>
<tr>
<td>Acceso al mercado laboral</td>
<td>La oferta laboral es mayor que la demanda</td>
</tr>
</tbody>
</table>

6.3.2 Vulnerabilidad ambiental

Se refiere al grado de resistencia del medio natural y de los seres vivos que conforman un determinado ecosistema, ante la presencia de la variabilidad climática. Igualmente está relacionada con el deterioro del medio ambiente (calidad del aire, agua y suelo), la deforestación, la explotación irracional de los recursos naturales, exposición a contaminantes tóxicos, pérdida de biodiversidad y la ruptura de la auto recuperación de los sistemas ecológicos (Guía metodológica para la elaboración de Planes Departamentales para la Gestión del Riesgo. PNUD, 2012).
Tabla 12. Variables de análisis de vulnerabilidad ambiental

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor de Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baja</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Condiciones atmosféricas</td>
<td>Niveles de temperatura y/o precipitación promedio normales</td>
</tr>
<tr>
<td>Composición y calidad del aire</td>
<td>Sin ningún grado de contaminación</td>
</tr>
<tr>
<td>Composición y calidad del agua</td>
<td>Sin ningún grado de contaminación</td>
</tr>
<tr>
<td>Condiciones de los recursos naturales</td>
<td>Nivel moderado de explotación de los recursos naturales, nivel de contaminación leve, no se practica la deforestación</td>
</tr>
</tbody>
</table>

6.3.4 Vulnerabilidad social

Esta variable se analizó a partir del nivel de organización y participación que tiene una comunidad para prevenir y responder ante situaciones de emergencia. La población organizada, formal e informalmente, puede superar más fácilmente las consecuencias de un desastre, debido a su capacidad para prevenir y dar respuesta ante una situación de emergencia es mucho más efectiva y rápida (Guía metodológica para la elaboración de Planes Departamentales para la Gestión del Riesgo. PNUD, 2012).
Tabla 13. Variables de análisis de vulnerabilidad social

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor de Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baja</td>
</tr>
<tr>
<td>Nivel de Organización</td>
<td>Comunidad totalmente organizada</td>
</tr>
<tr>
<td>Participación</td>
<td>Participación activa de la comunidad</td>
</tr>
<tr>
<td>Grado de relación entre las organizaciones comunitarias y las instituciones</td>
<td>Fuerte relación entre las organizaciones comunitarias y las instituciones</td>
</tr>
<tr>
<td>Conocimiento comunitario del riesgo</td>
<td>La comunidad tiene total conocimiento de los riesgos presentes en el territorio y asume su compromiso frente al tema</td>
</tr>
</tbody>
</table>

6.3.5 Calificación de la vulnerabilidad

El riesgo solo puede existir al presentarse una amenaza en determinadas condiciones de vulnerabilidad, en un espacio y tiempo específico. No puede existir el riesgo sin la existencia de una amenaza y de una sociedad vulnerable. De hecho amenazas y vulnerabilidades se encuentran mutuamente condicionadas, por lo tanto, al aumentar la resiliencia, una comunidad reducirá sus condiciones de vulnerabilidad y por lo tanto disminuirá su nivel de riesgo (Guía metodológica para la elaboración de Planes Departamentales para la Gestión del Riesgo. PNUD, 2012).

Para cada una de las amenazas identificadas se realizó la evaluación de los cuatro (4) factores de vulnerabilidad considerados. La calificación de vulnerabilidad total se realiza mediante la siguiente ecuación:

\[V_{total} = V_fisica + V_ambiental + V_economica + V_social \]

En donde V: Vulnerabilidad

El valor que se obtuvo se utilizó para determinar el nivel de vulnerabilidad (baja, media o alta), con base en los lineamientos que se encuentran en la Guía Metodológica para la Elaboración de Planes Departamentales para la Gestión del Riesgo, desarrollada por el Programa de las Naciones Unidas para el Desarrollo, la Unidad Nacional para la Gestión del Riesgo de Desastres y la Unión Europea.
La Tabla 14 presenta la descripción de los valores de vulnerabilidad que se obtienen de la ecuación anteriormente expuesta:

Tabla 14. Calificación de vulnerabilidad total

<table>
<thead>
<tr>
<th>GRADO</th>
<th>DESCRIPCIÓN/CARACTERÍSTICAS</th>
<th>INTERVALO</th>
</tr>
</thead>
<tbody>
<tr>
<td>VB (Vulnerabilidad Baja)</td>
<td>Viviendas asentadas en terrenos seguros, con materiales sismoresistentes, en buen estado de conservación, población con un nivel de ingreso medio y alto, con estudios y cultura de prevención, con cobertura de servicios públicos básicos, con un buen nivel de organización, participación y articulación entre las instituciones y organizaciones existentes.</td>
<td>16-26</td>
</tr>
<tr>
<td>VM (Vulnerabilidad Media)</td>
<td>Sectores que presentan inundaciones muy esporádicas, construcciones con materiales de buena calidad, en regular y buen estado de conservación, población con un nivel de ingreso económico medio, cultura de prevención, con cobertura parcial de servicios básicos, con facilidades de acceso para atención de emergencia. Población organizada, con participación de la mayoría, medianamente relacionados e integración parcial entre las instituciones y organizaciones existentes.</td>
<td>27-37</td>
</tr>
<tr>
<td>VA (Vulnerabilidad Alta)</td>
<td>Edificaciones en materiales precarios, en mal y regular estado de construcción, con procesos de hacinamiento y tugurización. Población de escasos recursos económicos, sin conocimientos y cultura de prevención, cobertura parcial a inexistente de servicios públicos básicos, accesibilidad limitada para atención de emergencias; así como escasa a nula organización, participación y relación entre las instituciones y organizaciones existentes.</td>
<td>38-48</td>
</tr>
</tbody>
</table>

En la Tabla 15 se presenta el consolidado de vulnerabilidad por localidades, incluyendo las zonas rural e insular:
Tabla 15. Consolidado de vulnerabilidad por localidades, zona rural e insular de Cartagena de Indias.

<table>
<thead>
<tr>
<th>TIPOS DE AMENAZAS</th>
<th>LOCALIDAD 1 HISTÓRICA Y DEL CARIBE</th>
<th>LOCALIDAD 2 DE LA VIRGEN Y TURÍSTICA</th>
<th>LOCALIDAD 3 INDUSTRIAL Y DE LA BAHÍA</th>
<th>ZONA RURAL CORREGIMIENTOS CONTINENTALES</th>
<th>ZONA INSULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATURALES: HIDROMETEOROLÓGICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huracanes y vendavales</td>
<td>Alta</td>
<td>Alta</td>
<td>Alta</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Inundaciones</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Mar de leva</td>
<td>Media</td>
<td>-</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
</tr>
<tr>
<td>Ceráunica</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Media</td>
</tr>
<tr>
<td>NATURALES: GEOLÓGICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sismos</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
</tr>
<tr>
<td>Tsunami</td>
<td>Alta</td>
<td>-</td>
<td>Alta</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Remoción en masa</td>
<td>Alta</td>
<td>Alta</td>
<td>Alta</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Erosión costera</td>
<td>Alta</td>
<td>-</td>
<td>Media</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Diapirismo de lodos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>SOCIO-NATURALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incendios forestales</td>
<td>-</td>
<td>Media</td>
<td>-</td>
<td>Media</td>
<td>-</td>
</tr>
<tr>
<td>Degradación RN</td>
<td>-</td>
<td>-</td>
<td>Media</td>
<td>Media</td>
<td>-</td>
</tr>
<tr>
<td>ANTRÓPICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminación</td>
<td>-</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>-</td>
</tr>
<tr>
<td>Aglomeraciones de público</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>-</td>
</tr>
<tr>
<td>Redes eléctricas</td>
<td>-</td>
<td>Media</td>
<td>-</td>
<td>-</td>
<td>Media</td>
</tr>
<tr>
<td>Accidente aéreo</td>
<td>-</td>
<td>Alta</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TECNOLÓGICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derrames</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
</tr>
<tr>
<td>Fugas</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Explosiones</td>
<td>-</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>-</td>
</tr>
<tr>
<td>Incendios</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
<td>Media</td>
</tr>
</tbody>
</table>
6.4 Análisis del Riesgo

Riesgo de desastres: “Corresponde a los daños o pérdidas potenciales que pueden presentarse debido a los eventos físicos peligrosos de origen natural, socionatural, tecnológico, biosanitario o humano no intencional, en un periodo de tiempo específico y que son determinados por la vulnerabilidad de los elementos expuestos; por consiguiente el riesgo de desastres se deriva de la combinación de la amenaza y la vulnerabilidad” (Ley 21523 de 2012).

El análisis del riesgo consiste en identificar y evaluar posibles daños y pérdidas como consecuencia del impacto de una amenaza sobre una unidad social en condiciones vulnerables (GTZ, 2010). Investiga los factores y procesos generadores del riesgo como base para determinar las medidas a tomar para reducir el riesgo existente y evitar la generación de nuevas condiciones de vulnerabilidad y riesgo.

Ilustración 8. Esquema de análisis del riesgo

El cálculo del riesgo correspondió a un análisis y combinación de datos teóricos y empíricos con respecto a la probabilidad de ocurrencia de las amenazas identificadas, así como el análisis de la vulnerabilidad en cada una de las localidades, incluyendo las zonas rural e insular. De acuerdo con la Guía Metodológica para la Elaboración de Planes Departamentales para la Gestión del Riesgo, desarrollada por el Programa de las Naciones Unidas para el Desarrollo, la Unidad Nacional para la Gestión del Riesgo de Desastres y la Unión Europea, 2012, se trabajó con un modelo analítico (matemático), que se basa en la siguiente ecuación:
\[R = f (A, V) \]

Dicha ecuación es la referencia básica para la estimación del riesgo (R), a partir de sus factores de amenaza (A) y vulnerabilidad (V).

Este criterio se basa en el uso de una matriz de doble entrada (ver Tabla 15), con ambos resultados se interrelaciona, por un lado (vertical) el valor y nivel estimado de la amenaza; y por otro (horizontal), el nivel de vulnerabilidad total determinado para cada una de estas amenazas, en la intersección de ambos valores se estima el nivel de riesgo esperado.

Tabla 16. Matriz de amenaza y vulnerabilidad para estimación del nivel de riesgo

<table>
<thead>
<tr>
<th>Amenaza Alta</th>
<th>Riesgo Medio</th>
<th>Riesgo Alto</th>
<th>Riesgo Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amenaza Media</td>
<td>Riesgo Bajo</td>
<td>Riesgo Medio</td>
<td>Riesgo Alto</td>
</tr>
<tr>
<td>Amenaza Baja</td>
<td>Riesgo Bajo</td>
<td>Riesgo Bajo</td>
<td>Riesgo Medio</td>
</tr>
<tr>
<td>Vulnerabilidad Baja</td>
<td>Vulnerabilidad Media</td>
<td>Vulnerabilidad Alta</td>
<td></td>
</tr>
</tbody>
</table>

El riesgo solo puede existir cuando hay interacción y relación entre factores de amenaza y vulnerabilidad, en espacios o territorios definidos y determinados. No puede existir una amenaza sin la existencia de una sociedad vulnerable y viceversa; esto significa que el riesgo puede ser reducido o evitado si se interviene sobre los factores que generan la vulnerabilidad de la sociedad o sobre las amenazas en el territorio. De hecho, amenazas y vulnerabilidades se encuentran mutuamente condicionadas, por lo tanto, cuando una comunidad aumenta su resiliencia, reduce sus condiciones de vulnerabilidad y sus niveles de riesgo.

De acuerdo con el análisis realizado, los eventos que representan un riesgo alto para el distrito de Cartagena de Indias son los huracanes, los vendavales, las inundaciones, la remoción en masa, la erosión costera y la aglomeración de público; mientras que eventos como el mar de leva, los tsunami, la degradación de recursos naturales, la contaminación, los derrames, las fugas, las explosiones y los incendios, están calificados como de riesgo medio.

En la Tabla 17 se presenta el consolidado de las amenazas y la calificación del riesgo para el distrito de Cartagena de Indias:
Tabla 17. Calificación del riesgo para cada una de las amenazas priorizadas por localidades, zona rural e insular. Cartagena de Indias D.T.C

<table>
<thead>
<tr>
<th>TIPOS DE AMENAZAS</th>
<th>LOCALIDAD 1 HISTÓRICA Y DEL CARIBE</th>
<th>LOCALIDAD 2 DE LA VIRGEN Y TURÍSTICA</th>
<th>LOCALIDAD 3 INDUSTRIAL Y DE LA BAHÍA</th>
<th>ZONA RURAL CORREGIMIENTOS CONTINENTALES</th>
<th>ZONA INSULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATURALES: HIDROMETEOROLÓGICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huracanes y vendavales</td>
<td>Alto</td>
<td>Alto</td>
<td>Alto</td>
<td>Alto</td>
<td>Alto</td>
</tr>
<tr>
<td>Inundaciones</td>
<td>Alto</td>
<td>Alto</td>
<td>Alto</td>
<td>Alto</td>
<td>Alto</td>
</tr>
<tr>
<td>Mar de leva</td>
<td>Medio</td>
<td>-</td>
<td>Medio</td>
<td>Medio</td>
<td>Alto</td>
</tr>
<tr>
<td>Ceráunica</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Bajo</td>
</tr>
<tr>
<td>NATURALES: GEOLÓGICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sismos</td>
<td>Bajo</td>
<td>Bajo</td>
<td>Bajo</td>
<td>Bajo</td>
<td>Bajo</td>
</tr>
<tr>
<td>Tsunami</td>
<td>Medio</td>
<td>-</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
</tr>
<tr>
<td>Remoción en masa</td>
<td>Alto</td>
<td>Alto</td>
<td>Alto</td>
<td>Alto</td>
<td>Alto</td>
</tr>
<tr>
<td>Erosión costera</td>
<td>Alto</td>
<td>-</td>
<td>Bajo</td>
<td>Alto</td>
<td>Alto</td>
</tr>
<tr>
<td>Diapirismo de lodos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Alto</td>
<td>Alto</td>
</tr>
<tr>
<td>SOCIO-NATURALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incendios forestales</td>
<td>-</td>
<td>Bajo</td>
<td>-</td>
<td>Bajo</td>
<td>-</td>
</tr>
<tr>
<td>Degradación RN</td>
<td>-</td>
<td>-</td>
<td>Medio</td>
<td>Medio</td>
<td>-</td>
</tr>
<tr>
<td>ANTRÓPICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminación</td>
<td>-</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
<td>-</td>
</tr>
<tr>
<td>Aglomeraciones de público</td>
<td>Alto</td>
<td>Alto</td>
<td>Medio</td>
<td>Medio</td>
<td>-</td>
</tr>
<tr>
<td>Redes eléctricas</td>
<td>-</td>
<td>Medio</td>
<td>-</td>
<td>-</td>
<td>Medio</td>
</tr>
<tr>
<td>Accidente aéreo</td>
<td>-</td>
<td>Medio</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TECNOLÓGICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derrames</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
</tr>
<tr>
<td>Fugas</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
<td>-</td>
</tr>
<tr>
<td>Explosiones</td>
<td>-</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
<td>-</td>
</tr>
<tr>
<td>Incendios</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
</tr>
</tbody>
</table>
7. CAMBIO CLIMÁTICO

De todas las dolencias que padece el planeta, la más peligrosa según los estudiosos en la materia es la amenaza por el Cambio Climático, debido a la acumulación de gases en la atmósfera que, al elevar la temperatura, producen el efecto invernadero, lo que sumado a otros factores como la disminución de la capa de ozono, están originando un calentamiento global con graves consecuencias para el equilibrio ambiental del planeta (LEGER S., 1992).

La Ley 1523 de 2012, define Cambio Climático como: Importante variación estadística en el estado medio del clima o en su variabilidad, que persiste durante un periodo prolongado (normalmente decenios o incluso más). El cambio climático se puede deber a procesos naturales internos o a cambios del forzamiento externo, o bien a cambios persistentes antropogénicos en la composición de la atmósfera o en el uso de las tierras.

Los cambios climáticos en el ambiente y las nuevas amenazas que se generarán con el Cambio Climático Global son el ejemplo más extremo de la noción de amenaza socio-natural (LAVELL, A. et al. 2003).

Fenómenos como tormentas tropicales, sequías, olas de calor, incendios forestales, malas cosechas e inundaciones que se están dando en los últimos veinte años, son atribuidos por la mayoría de los científicos a los cambios climáticos que se originan en algunas regiones por el calentamiento global. Pero lo grave no sólo son estos fenómenos, que sin duda causan de manera directa pérdidas de vidas y destrucción de infraestructura urbana y rural, sino que a largo plazo, la vida en la tierra sería más vulnerable a otros padecimientos derivados del cambio climático (PNUD, 2011).

Para PREDECAN (2010), en la Gestión del Riesgo, alcanzar una reducción duradera y eficaz del riesgo de desastre en América Latina y El Caribe, debe considerar especialmente el cambio en las precipitaciones, la creciente amenaza de huracanes y el deshielo de los nevados andinos para evitar daños y pérdidas por inundaciones, ciclones, sequia, avalanchas y deslizamientos inesperados. Las zonas bajas en las costas serán las más expuestas a inundaciones vinculadas a lluvias torrenciales y oleadas por aumento del nivel del mar.

El IPPC, define la adaptación al cambio climático como el “ajuste en sistemas humanos o naturales en respuesta a los estímulos climáticos actuales o esperados o sus efectos, que modera los daños o explota oportunidades beneficiosas”. Hay dos tipos de adaptación, la reactiva, que se da después de la manifestación de impactos iniciales y la planificada; que a su vez puede ser reactiva o anticipada (emprendida antes que los impactos sean aparentes). Además, la adaptación puede ser a corto o largo plazo, localizada o extendida, y pueden tener varias funciones y tomar varias formas.
De esta manera, el conocimiento sobre las tendencias climáticas debe ser incorporado en el análisis del riesgo de desastre como base para la planificación territorial o sectorial. Mediante la aplicación de un enfoque participativo para la planificación del desarrollo territorial municipal, las experiencias propias de la población combinadas con la información científica disponible ofrecen una idea de las necesidades de adaptación. La consideración de nuevos conocimientos en el marco del monitoreo mejorará y afinará los pronósticos meteorológicos y las actividades que se debe emprender.

Teniendo en cuenta que el 75% de los desastres actuales son de origen hidrometeorológico (ONU/EIRD, 2006), es necesario abordar el tema de cambio climático de forma más precisa, involucrando este aspecto en el Plan Distrital de Gestión del Riesgo del Distrito, por este motivo, se incluye este aparte como una síntesis del estudio: INVEMAR-MADS-Alcaldía Mayor de Cartagena de Indias-CDKN. 2012. Lineamientos para la adaptación al cambio climático de Cartagena de Indias. Proyecto Integración de la Adaptación Al Cambio Climático en la Planificación Territorial y Gestión Sectorial de Cartagena de Indias.

El último reporte del Panel Intergubernamental de expertos en cambio climático (IPCC por sus siglas en inglés) del año 2007, describe un aumento del nivel del mar (ANM) que incrementará el riesgo de inundaciones en zonas costeras, un ascenso de la temperatura y una mayor frecuencia de eventos meteorológicos extremos, con alta incidencia de huracanes y lluvias intensas. Ante estos escenarios las zonas costeras bajas son una de las regiones más afectadas en el mundo.

Cartagena de Indias es una de las ciudades costeras más importantes del Caribe continental colombiano, debido a su valor histórico-cultural, su desarrollo socioeconómico y competitividad dado el desarrollo portuario-industrial, turístico y de la construcción que sustenta. No obstante, ha convivido históricamente con los fenómenos climáticos, que en las últimas décadas han producido impactos significativos en su población y actividad económica.

- Las significativas afectaciones que recibe por las variaciones del clima, se deben a la confluencia de factores físicos, geográficos, sociales, económicos y políticos que intervienen en su desarrollo y hacen parte de la ciudad un área crítica por su vulnerabilidad al cambio climático.
- Por su carácter costero, se encuentra expuesta a los efectos de los procesos marino-costeros sobre su línea de costa (erosión y acreción), y a los impactos de los fenómenos climáticos de origen marino y continental que tienen influencia sobre el territorio.
- A la vez la Ciudad, y sus áreas marinas aledañas recogen los problemas de vulnerabilidad a nivel regional por la influencia que ejerce la Cuenca del río Magdalena a través de la desembocadura del Canal del Dique en la bahía de Cartagena, el cual funciona como un brazo del río que permite la conexión permanente entre la Bahía y la Cuenca.
- Esta situación hace que Cartagena sea receptora de los problemas originados por los cambios en el ciclo hidrológico de la Cuenca del Magdalena, en el que se alternan periodos de crecidas y sequías extremas, cada una de las cuales le confiere amenazas que se convierten en emergencias o desastres a nivel regional. Las crecidas significan amenazas de inundación para las poblaciones y sus infraestructuras, a lo largo del Canal del Dique y por su parte las sequías dificultan la captación del recurso para acueductos, agricultura y transporte.
En resumen los fenómenos climáticos que más impactan al Distrito son: las variaciones en el nivel del mar (mar de leva), y los eventos extremos: lluvias torrenciales (que incrementan los flujos de agua de escorrentía y los deslizamientos de tierra), y veranos intensos.

De acuerdo con el estudio de INVEMAR-MADS-Alcaldía Mayor de Cartagena de Indias-CDKN. 2012, los impactos más notables que depara el cambio climático en la Ciudad de Cartagena son:

i. Inundaciones.
ii. Pérdida de playas y erosión costera.
iii. Pérdida del patrimonio ecológico.
iv. Disminución de la pesca.
v. Aumento de enfermedades transmitidas por mosquitos.

Los aspectos relacionados con las inundaciones, la pérdida de playas y erosión costera, fueron calificados como eventos que representan un nivel de riesgo estimativo alto para el distrito de Cartagena de Indias y son objeto de un análisis detallado en el capítulo 8 sobre escenarios de riesgo.
8. ESCENARIOS DE RIESGO

Un escenario de riesgo se representa por medio de la caracterización de los factores de riesgo, sus causas, la relación entre las causas, el tipo y nivel de daños que se pueden presentar, la identificación de los principales factores que intervienen, así como las medidas posibles a aplicar y los actores públicos y privados que deben intervenir (SNPD, 2006).

La formulación de escenarios de riesgo comprende la estimación de pérdidas y daños que podría sufrir un territorio ante la ocurrencia de algún desastre asociado a las principales amenazas priorizadas. En la medida que tanto las amenazas, como las condiciones de vulnerabilidad presentan variaciones en el territorio, es posible determinar una distribución espacial del riesgo, con la finalidad de determinar y priorizar acciones, intervenciones y proyectos de manera específica, orientados a disminuir los niveles de vulnerabilidad y riesgo.

Para seleccionarlos se reconocen diferentes criterios según las miradas, intereses y actores involucrados, con base en los cuales se puede obtener una buena cantidad de posibles panoramas de riesgo. Para el caso del Plan Distrital de Gestión del Riesgo de Cartagena de Indias, se puntualizaron los escenarios por fenómenos amenazantes, en los que cada escenario se refiere a las condiciones de riesgo asociadas con una amenaza en particular (fenómeno amenazante).

Cartagena de Indias D.T.C. se encuentra expuesta a amenazas de orígenes diferentes, las cuales al conjugarse con las vulnerabilidades presentes en el territorio definen diversos escenarios de riesgo:

1. Escenarios de riesgo asociados con fenómenos de origen hidrometeorológico: Huracanes, vendavales, inundaciones (relacionadas con los cuerpos de agua y relacionadas con los canales de drenaje) y mar de leva.
2. Escenarios de riesgo asociados con fenómenos de origen geológico: Tsunami, remoción en masa, erosión costera y diapirismo de lodos.
3. Escenarios de riesgo asociados con fenómenos de origen antrópico: Aglomeraciones en público.
4. Escenarios de riesgo asociados con fenómenos de origen tecnológico: Derrames (líquidos y/o sólidos), fugas (gases), explosiones e incendios.
8.1 Escenarios de Riesgo Asociados con Fenómenos de Origen Hidrometeorológico: Huracanes

Los huracanes son fenómenos hidrometeorológicos que se caracterizan por la aparición de vientos fuertes con trayectoria circular y con velocidades superiores a los 118 Km/h, que contienen bastante humedad y calor, se forman sobre el mar Caribe y su anillo tiene entre 100 y 200 Km de diámetro.

Aun cuando los huracanes pueden formarse desde principios de mayo en el mar Caribe, la temporada oficial de huracanes comienza el primero de junio y termina el 30 de noviembre, con una duración aproximada de 9 a 12 días. Se establece que los últimos diecisiete (17) años han sido muy activos y se observa como la elevada actividad ciclónica del año 2005 coincide con un aumento sustancial de la temperatura global. Expertos en calentamiento global coinciden en que la intensidad de las tormentas en el Atlántico podría aumentar por efectos del incremento de la temperatura superficial del océano (Boletín Científico CIOH No. 25, 2007).

Ilustración 9. Trayectoria y escala de intensidad de las Tormentas Tropicales.

Según la Agencia para la Atmósfera y el Océano de los Estados Unidos (NOAA por sus siglas en inglés), exceptuando el área de las islas de San Andrés, Providencia, Santa Catalina y los cayos de Roncador, Quitasueño, Serranilla, Serrana y Bajo Nuevo, el caribe Colombiano ha sido caracterizado como una zona de baja probabilidad de formación y desarrollo de tormentas tropicales.
Aunque Cartagena se ubica en la categoría de baja probabilidad de ocurrencia de huracanes, en las dos últimas décadas se ha presentado un aumento de este tipo de fenómenos, convirtiéndose en una de las principales amenazas a las que están expuestas las ciudades costeras.

Los estudios realizados sobre huracanes en el país son muy pocos debido a la baja probabilidad de que se presente este tipo de eventos en el territorio, sin embargo hay que tener en cuenta que una amenaza puede desencadenar otra serie de eventos físicos dañinos como ocurre en este caso; adicionalmente los reportes nacionales sobre huracanes son muy pocos, pues a pesar de que están identificados, son escasos los datos de los impactos que generaron como pérdida de vidas humanas, número de damnificados, infraestructura afectada, etc.18

En el año son muchas las perturbaciones tropicales que evolucionan a tormenta tropical, pero pocas llegan a convertirse en huracanes y por fortuna para Colombia muy pocos llegan a sus costas directamente, los coletazos de los huracanes son los que más afectan esta región, originando diferentes fenómenos como mar de leva, marejadas e inundaciones.

Tabla 18. Registro de análisis históricos de huracanes que afectaron el caribe Colombiano

<table>
<thead>
<tr>
<th>EVENTO/FECHA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huracán Joan, octubre de 1988</td>
<td>Atravesó la península de La Guajira como tormenta tropical, se convirtió posteriormente en huracán clase 1 desplazándose por el sur del Archipiélago de San Andrés y Providencia. Afectó al municipio de Carmen de Bolívar, ocasionando fuertes inundaciones, dejando cinco muertos y novecientas viviendas afectadas.</td>
</tr>
<tr>
<td>Tormenta tropical Bret, agosto de 1993</td>
<td>Pasó por el sur de La Guajira, Magdalena y Atlántico.</td>
</tr>
<tr>
<td>Depresión tropical Roxanne, octubre de 1955</td>
<td>Desarrollada al norte del archipiélago de San Andrés y Providencia, se desplazó al noroeste alcanzando categoría 3 antes de entrar a México.</td>
</tr>
<tr>
<td>Tormenta tropical César, julio de 1996</td>
<td>Se desplazó por el norte de la península de La Guajira, pasando por el archipiélago de San Andrés y Providencia alcanzando una categoría 1, no existen reportes de afectación ni perdidas.</td>
</tr>
<tr>
<td>Depresión tropical Mitch, octubre de 1998</td>
<td>Se generó a 100 millas náuticas al norte de Cartagena de Indias D.T.C, avanzando a huracán de categoría 5 frente a las costas de Honduras, no se tienen reportes de afectación.</td>
</tr>
<tr>
<td>Huracán Lenny, noviembre de 1999</td>
<td>Se generó a 120 millas náuticas al noroeste de Cartagena de Indias D.T.C, desplazándose en dirección oeste-este, afectando a más de 400.000 personas en la costa Atlántica, dejando dos muertos y cinco desparecidos, pérdidas económicas elevadas por la afectación a infraestructura, pérdida de cultivos y ganado. Alcanzó categoría 3 al pasar por Puerto Rico.</td>
</tr>
<tr>
<td>Huracanes Wilma y Beta, 2005</td>
<td>Pasaron por archipiélago de San Andrés y Providencia, afectándolo de manera severa.</td>
</tr>
</tbody>
</table>

Fuente: Plan de Contingencia contra Huracanes del Parque Nacional Natural Corales del Rosario y San Bernardo.

18 Plan de Contingencia contra Huracanes del Parque Nacional Natural Corales del Rosario y San Bernardo.
Los datos anteriores demuestran que la región caribe Colombiana, a pesar de estar catalogada como de baja probabilidad de ocurrencia de este tipo de fenómenos, no se encuentra exenta de sufrir los efectos de un huracán, ya sea de manera directa o indirecta por los efectos colaterales del mismo.

Ilustración 10. Trayectoria del huracán Joan, octubre de 1988, que afectó a Cartagena de Indias.

![Ilustración del huracán Joan](https://www.nasa.gov)

Por influencia directa de las bandas nubosas alimentadoras del ciclón tropical que puede generar lluvias fuertes, vendavales, semitornados, incremento de la altura del oleaje, tormentas eléctricas, entre otros, se encuentran las zonas costeras de los departamentos de Atlántico, Magdalena, Bolívar, Sucre y Córdoba; por efecto de las fuertes lluvias se pueden presentar además inundaciones en ciudades como Cartagena, Barranquilla, Santa Marta, Montería, Sincelejo, Valledupar y crecientes súbitas en ríos y quebradas de la Sierra Nevada de Santa Marta\(^\text{19}\).

Efectos destructivos de los huracanes:

- **Marejadas u olas altas:** Al igual que el mar de leva, la marejada no es más que agua que la fuerza de los vientos que soplan alrededor del huracán, empuja hacia la costa. Este aumento del nivel del mar puede causar inundaciones severas, erosión de playas y de carreteras costeras, destrucción de construcciones débiles, etc. También afecta a las

\(^\text{19}\) Plan de Contingencia contra Huracanes del Parque Nacional Natural Corales del Rosario y San Bernardo.
embarcaciones y deposita grandes cantidades de sal tierra adentro, alterando la salinidad normal de los suelos.

- **Vientos fuertes**: Superiores a los 118 Km/h, su fuerza proyecta o derriba objetos, imprime movimiento a las aguas de los océanos y puede destruir fácilmente cultivos y edificios cuya estructura sea de mala calidad.
 Durante un huracán los escombros (carteles, materiales que se desprenden de los techos, objetos pequeños) se transforman en proyectiles. Los daños sufridos por caída de árboles, torres, destrucción de tuberías de distribución de agua, de cables de servicios públicos y los postes derrumbados, causan la interrupciones y un grado considerable de desorganización.

- **Lluvias torrenciales**: Uno de los aspectos más significativos de un huracán, es la producción extraordinaria de lluvia, esto causa inundaciones severas y deslizamientos.
 Se pueden presentar grandes cantidades de lluvia debido al paso del huracán, hasta 160 Km tierra adentro, en zonas donde el huracán no producirá efectos y en donde las inundaciones repentinas y los deslizamientos son las mayores amenazas.

El área de afectación del huracán para el distrito de Cartagena de Indias, depende de la cercanía al sitio donde se esté desarrollando, así como de la intensidad del mismo. Si se encuentra lejos del distrito y su categoría es baja, lo más probable es que no genere grandes impactos, pero si se ubica cerca de las costas caribes Colombianas y su categoría es de 4 o 5, puede tener efectos devastadores, especialmente en la zona insular.

De acuerdo con el Plan de Contingencias contra Huracanes del Parque Nacional Natural Corales del Rosario y San Bernardo: “Probabilidad de frecuencia y recurrencia. La manifestación de huracanes en el caribe Colombiano es muy baja, los pocos que se han presentado con excepción de Bret no llegan a bajar de la zona de la Ciénaga Grande de Santa Marta, por lo que el promedio de huracán por año en la zona de Cartagena de Indias D.T.C. es de 0.08%, para el efecto de que ocurra un evento en un año, la probabilidad es del 8%, en cambio la probabilidad de que no ocurra ningún evento es del 91%. De igual manera la probabilidad de frecuencia o de retorno de un huracán en la zona de Cartagena de Indias D.T.C. es de 12 años. (GONZALES MERENTES, Humberto, 1990)”.

8.2 Escenarios de Riesgo Asociados con Fenómenos de Origen Hidrometeorológico:

Vendavales

Los vendavales son fenómenos meteorológicos caracterizados por vientos fuertes y repentinos, que generalmente están acompañados de aguaceros intensos de larga duración y tormentas eléctricas locales. Estos eventos generalmente ocurren al finalizar los meses de verano y comenzar los de invierno y viceversa.

Se manifiestan con vientos de hasta 60 Km/h y constituyen un escenario de riesgo por la capacidad de arrancar techos de viviendas, destruir cultivos, tumbar redes eléctricas y de comunicación,
ocasionar caída de árboles y en algunos casos hasta derribar estructuras, adicionalmente originan la obstrucción de desagües con basura y sedimentos.

La eventualidad y corta duración de este tipo de incidentes, causa principalmente daños económicos entre moderados a altos, pero la vulnerabilidad de la población que generalmente se ve afectada y la dificultad económica para reponer las pérdidas, hace necesario que se deban tomar medidas preventivas, como realizar buenos amarres en los techos y sembrar barreras vivas corta vientos, puesto que la ausencia de este tipo de vegetación, expone a viviendas y cultivos al efecto destructivo de estos eventos naturales.

Se considera que el nivel de riesgo estimativo es alto para el distrito y que este fenómeno puede presentarse en cualquier parte del territorio, afectando especialmente a las poblaciones más vulnerables, en términos generales por efectos de un vendaval se puede presentar lo siguiente:

- Daños en la infraestructura física de las viviendas que están conformadas de materiales de baja calidad constructiva.
- Afectación a los cultivos de tallo alto (frutales).
- Obstrucción de vías por caída de árboles.
- Pérdida de flores y frutos de los cultivos con repercusiones en la producción agrícola y disminución de ingresos económicos.

8.3 Escenarios de Riesgo Asociados con Fenómenos de Origen Hidrometeorológico: Inundaciones

Las inundaciones son un fenómeno natural y recurrente de los ríos, como resultado de lluvias fuertes o continuas que aumentan el nivel de las aguas, a tal punto que el río se sale del cauce natural; también hay inundaciones urbanas por deficiencia en los sistemas recolectores de agua, hechos que se manifiestan con frecuencia en la mayor parte del distrito.

Las inundaciones son fenómenos altamente predecibles; su recurrencia está asociada a los regímenes de lluvia de cada región, por tanto es necesario reforzar los sistemas de alerta temprana en las zonas expuestas. En la actualidad estos regímenes se ven alterados durante la ocurrencia de los fenómenos de El Niño, La Niña y la Oscilación del Atlántico Norte.

La inundación por desborde de los diferentes drenajes, constituye claramente, el fenómeno de mayor amenaza y recurrencia, con impacto tanto en las áreas urbanas, como en las áreas rurales y en algunos sectores de la zona insular, lo cual se puede corroborar por la cronología de desastres y emergencias del distrito.

Daños ocasionados por las inundaciones:

- Pérdida de terrenos agrícolas, fertilidad del suelo y cultivos.
- Incremento de plagas y enfermedades en los cultivos.
- Pérdidas económicas en el sector agropecuario.
- Aislamiento de centros poblados.
Destrucción de viviendas, con pérdidas económicas.
Colapso de los sistemas de acueducto y alcantarillado.
Disminución de las fuentes de trabajo.
Colapso de puentes.
Obstrucción del drenaje existente por acarreamiento de sedimentos finos y gruesos, a lo que se debe añadir la falta de mantenimiento y el depósito de basura a lo largo de dichas obras.
Desabastecimiento de agua potable.

El distrito de Cartagena es una de las ciudades que se encuentran en las estadísticas de afectación por eventos naturales, como prueba de ello se tiene las inundaciones de los años 2010 y 2011. Las inundaciones que se presentaron durante este período, hicieron tangible el hecho de que la ciénaga de La Virgen y todos los drenajes que llegan a ella, generan inundaciones con cierto tiempo de recurrencia, en su área de influencia.

Los factores que contribuyen a que se presente este fenómeno, están directamente relacionados con la intervención antrópica sobre la cuenca de la ciénaga de La Virgen. De acuerdo con el CIOH (1998), la ciénaga de La Virgen es una laguna costera ubicada sobre el costado norte de la ciudad de Cartagena y separada del mar por el cordón de arenas de La Boquilla. A partir de la década de los 80, se empezó una intervención directa con la construcción de la banca del Anillo Vial, hecho que contribuyó a que los propietarios de predios con frente a la ciénaga rellenaran el cuerpo de agua que quedó entre la vía y sus predios, extendiendo las propiedades hasta la banca, adicionalmente se han presentado invasiones del borde de agua en los costados noroeste y sur para construcción de viviendas y en el costado oeste y noroeste para construcción de estanques de cría de sábalos. Todas estas actividades han modificado las condiciones naturales de la ciénaga, con las consecuencias que se reflejan en las inundaciones que se presentan durante la temporada invernal.

Otro de los factores que contribuyen con la conformación de este escenario, lo constituye los cambios en los diferentes drenajes. Los cauces de las corrientes son estables mientras no se modifique su cauce, ni se realice extracción de materiales o cambien las condiciones hidráulicas o hidrológicas de la cuenca.

Las causas más importantes en la generación de inundaciones en el distrito son: La extracción de materiales de fondo de los cauces, la modificación de la topografía de la corriente, la construcción de estructuras dentro del cauce, invasión de las orillas o zonas de retiro, los vertimientos de aguas residuales, los cambios hidrológicos debidos a los procesos de urbanización, la deforestación de las cuencas, el aumento en el nivel de las mareas, cotas y niveles de las calles, acumulación de basuras y escombros, sedimentación por aporte de material de las cuencas y la falta de mantenimiento de canales y cauces.

En general las áreas inundables del distrito corresponden a las zonas bajas de llanuras intermareales a orillas del mar o a orillas de los cuerpos de agua internos, así como las partes bajas alrededor de los diferentes canales y drenajes, sectores que se encuentran expuestos a los cambios en el nivel de las aguas por múltiples causas: Oleaje, vientos, mares de leva, mareas, así como por el desborde de canales de drenaje y de cauces naturales por lluvias intensas.
De acuerdo con el informe del estudio: Valoración de los Niveles de Riesgo Ambientales en el Distrito de Cartagena. UNIVERSIDAD DE CARTAGENA, INSTITUTO DE HIDRÁULICA Y SANEAMIENTO AMBIENTAL –IHSA- SECRETARÍA DE PLANEACIÓN DISTRITAL, (2010), los puntos del territorio del distrito de Cartagena en los que se presentan inundaciones son los siguientes:

Tabla 19. Causas y puntos críticos de inundación en el Distrito de Cartagena

<table>
<thead>
<tr>
<th>CAUSA</th>
<th>PUNTOS CRÍTICOS DE INUNDACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Por acumulación de basuras y escombros: El aporte de basuras y escombros arrojados a los cauces de los arroyos y canales en un problema que afecta el sistema de drenaje pluvial de la ciudad</td>
<td>Sector del barrio el Centro y toda la zona amurallada. Mercado de Bazurto, sobre las avenidas Pedro de Heredia y El Lago. Canal paralelo a la Avenida Pedro de Heredia, en el sector de la subida al cerro de La Popa, por colmatación de la estructura con sedimentos.</td>
</tr>
<tr>
<td>En los box culvert múltiples, las basuras y la maleza se quedan retenidas en los tabiques internos de estas estructuras, produciendo la reducción de la sección del canal, por ejemplo: Box de la carretera que conduce a la Vía de La Cordialidad sobre el canal Matute y en el canal de la Urbanización Flor del Campo.</td>
<td>El transporte de basuras en los canales se presenta de manera generalizada y se refleja en la presencia de residuos flotantes sobre los cuerpos de agua receptores.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUSA</th>
<th>PUNTOS CRÍTICOS DE INUNDACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Por sedimentación: Este es un fenómeno asociado al proceso de erosión natural de los terrenos causado por la escorrentía superficial y se presenta en todos los sectores</td>
<td>Zona perimetral a las faldas del Cerro de la Popa, especialmente el Pie de la Popa sobre la avenida Pedro de Heredia, sobre la vía principal de Lo Amador. El sector del Paseo Bolívar frente al mercado Santa Rita y el tramo de la intersección entre el Paseo Bolívar y la Avenida Daniel Lemaitre.</td>
</tr>
<tr>
<td>Sector de la vía principal del barrio San Francisco, entre el cerro de La Popa y la Ciénaga de La Virgen. Lomas del Marín en el sector de Zaragocilla.</td>
<td>También se presentan puntos de acumulación en la desembocadura de los canales que drenan a la Ciénaga de La Virgen: El canal Ricaurte y el canal Matute.</td>
</tr>
</tbody>
</table>

!
CAUSA

PUNTOS CRÍTICOS DE INUNDACIÓN

Por elevación de mareas:
Ingreso de la onda de marea por alcantarillas de drenajes pluviales que descargan en los caños, lagos y ciénagas, en puntos bajos de la bahía externa e interna y en el mar Caribe.

- Centro Histórico en la Plaza de la Aduana, Camellón de los Mártires, Muelle de la Bodeguita con el Monumento de Los Pegasos, la plazoleta frente al Hotel Santa Teresa y en menor grado sectores como la Plaza de Los Coches con el Portal de los Dulces y Puerto Duro.
- Sector El Cabrero sobre la Tercera Avenida.
- Pie de La Popa: Intersección de las carreras 20; 20A; 21 y 21B con la calle 29. En las estructuras de drenaje que descargan al caño Bazurto, entre el Puente Jiménez interceptando la Avenida del Lago. Puente las Palmas (intersección de la carrera 17 con la Avenida del Lago).
- Barrio Martinez Martelo con intersección de la Avenida del Lago.
- Barrio Manga en las bocacalles que drenan hacia la ciénaga de Las Quintas.
- Barrio Castillo Grande sobre la vía marginal de la bahía y la boca-calle que drenan a la bahía entre el Club Naval y la carrera 5.
- La vía Marginal a la ciénaga de La Virgen, desde la terminación de la misma hasta el barrio El Pozón.
- Avenida del Malecón entre las calles sexta y décima.
- Sector frente al Edificio Seguros Bolívar calles catorce y quince.

Por niveles de calles: Problemas de encharcamiento, sectores ubicados en zonas de inundación natural o sectores donde no existen estructuras de drenaje o se encuentran en mal estado (por obstrucción o por mala ubicación).

- Urbanización Villa Rosita en la vía de la Cordialidad, construida sobre la llanura de inundación de los arroyos Matute y Calicanto.
- Urbanización Santa Clara, construida sobre la llanura de inundación del canal Carmelo-Campestre.
- Tramo de vía entre la India Catalina y el sector las Tenazas en el barrio San Diego.
- Avenida Santander: Frente al edificio de Seguros Bolívar (entrada a Bocagrande).
- Tramo entre el barrio El Cabrero y el Puente Romero Aguirre (todo el barrio El Cabrero y el barrio Marbella a lo largo de la Avenida Santander).
- En el barrio Crespo, entrada al aeropuerto y el sector aledaño al Club de Suboficiales.
- Barrio Manga, frente al cementerio.
- Barrio Pie del Cerro por la calle Real, desde la carrera 17 hasta la carrera 19 sobre la calle 30.
- Sector del límite de los barrios Pie de la Popa y Pie del cerro intersección entre las calles 30 y 31 con la carrera 20.
- Sector de los Leones en el camino del medio.
- Avenida principal del barrio San Francisco, sector del “Whio”.
- Paseo Bolívar frente al mercado Santa Rita.
- Avenida Pedro de Heredia en diversos sectores (problemas que se espera se corrijan con la construcción de Transcaribe): Frente al SENA y frente a las instalaciones de Tránsito Departamental (barrio Armenia) y frente a la Iglesia María Auxiliadora (barrio El Prado), Mercado de Bazaruto, intersección de la avenida con la subida a la Popa, sector de Chambacú frente a las instalaciones de la Policía Nacional.
CAUSA

PUNTOS CRÍTICOS DE INUNDACIÓN

<table>
<thead>
<tr>
<th>Por invasión de zonas de retiro:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existen sitios en la ciudad donde los canales o box culvert, cruzan por debajo de viviendas, edificaciones o dentro de zonas comunes de urbanizaciones:</td>
</tr>
<tr>
<td>Coliseo de boxeo “Chico de Hierro”</td>
</tr>
<tr>
<td>Canal Ricaurte: Vivienda sobre el canal en intersección con el Camino del Medio</td>
</tr>
<tr>
<td>Colegio Jorge Eliecer Gaitán</td>
</tr>
<tr>
<td>Barrio San José de los Campanos</td>
</tr>
<tr>
<td>Urbanización Villas de la Victoria, Urbanización Buenos Aires y la Urbanización La Providencia (construido sobre un área de inundación)</td>
</tr>
<tr>
<td>Tramo del canal Pilón en San Fernando</td>
</tr>
<tr>
<td>Igual situación se presenta en las cuencas rurales como el caso de los límites y orillas de la Ciénaga de La Virgen, y sobre cuencas y arroyos que pasan por zonas pobladas donde los patios de las casas invaden sectores inundables</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Por falta de mantenimiento:</th>
</tr>
</thead>
<tbody>
<tr>
<td>El problema de mantenimiento es general y la falta del mismo produce principalmente la obstrucción de las estructuras de entrada, por lo cual existen sitios con deficiencias temporales y otros con taponamientos permanentes que dan la imagen de inexistencia de estructuras de drenaje</td>
</tr>
<tr>
<td>La mayoría de los drenajes obstruidos permanentemente por la acción del sedimento presentan problemas hidráulicos que originan bajas velocidades y estas a su vez derivan en poca capacidad de arrastre del sedimento</td>
</tr>
</tbody>
</table>
Ilustración 11. Canal en el sector de La Castellana, nótese la acumulación de basuras.

Fuente: PNUD.

Ilustración 12. Sectores de alta susceptibilidad a la inundación, partes bajas, zonas de llanuras intermareales y de manglar, Ciénaga de La Virgen.

Fuente: PNUD.

8.4 Escenarios Riesgo Asociados con Fenómenos de Origen Hidrometeorológico: Mar de Leva

El fenómeno conocido como mar de leva, consiste en el aumento anormal de la altura del oleaje, debido a condiciones océano-atmosféricas adversas por el paso de sistemas atmosféricos de mal tiempo (bajas presiones), que empujan las aguas oceánicas hacia la costa, causando oleaje fuerte, el tamaño de las olas formadas depende de la velocidad y el tiempo que persiste la misma velocidad del viento.

El aumento del nivel del mar causado por tormentas es un importante riesgo que debe ser tenido en cuenta en los estudios sobre litorales altamente desarrollados en cualquier parte del mundo, como ocurre en el caso de Cartagena. Adicionalmente, las predicciones estiman que para el 2020, el aumento global del nivel medio del mar, estará entre 18 y 59 mm, lo cual implica un mayor impacto de estos fenómenos sobre la costa debido al aumento de la cota de inundación. Igualmente es posible que aumente la frecuencia e intensidad de las tormentas, dadas las consecuencias del cambio climático en los patrones oceanográficos y atmosféricos en el océano Atlántico.

Esta anomalía es típica de la época seca o de vientos (diciembre- abril), aunque las estadísticas muestran que casi siempre se presenta en enero y febrero, en algunas ocasiones se extiende a marzo. Su duración es de 48 horas aproximadamente, se calcula que el fenómeno puede repetirse hasta cuatro veces en un solo mes.

Según la información existente en Cartagena, las mayores inundaciones causadas por mar de leva que conoce la ciudad desde 1950 son las del 21 de febrero de 1988 durante el paso del huracán Joan21.

Anualmente se presentan inundaciones en la ciudad de Cartagena originadas por el fenómeno de mar de leva, este fenómeno se constituye en un riesgo debido a la situación del distrito, especialmente en los barrios alrededor de la Ciénaga de La Virgen y en los barrios El Laguito, Castillogrande, Bocagrande, Centro (sector amurallado), El Cabrero, Marbella, Crespo, los corregimientos costeros y toda la parte insular. Las siguientes imágenes son un claro ejemplo de ello:

8.5 Escenarios de Riesgo Asociados con Fenómenos de Origen Geológico: Tsunami

La palabra “tsunami”22 viene del japonés y significa “gran ola de puerto”. Un tsunami corresponde a una serie de olas marinas sucesivas, con gran longitud, corto periodo y reducida amplitud, causadas por la perturbación a gran escala de la superficie del mar, que se propagan en todas las direcciones desde el área generatriz, siendo generalmente la dirección de propagación de la energía principal, ortogonal a la dirección del eje de perturbación.

Los tsunami son generados por perturbaciones de la superficie del mar debido a la ocurrencia de una erupción volcánica submarina, un movimiento en masa de grandes proporciones en el fondo del mar, el impacto de un meteorito sobre la superficie libre del océano o por un terremoto que ocasione el súbito desplazamiento vertical de la corteza terrestre. Este último es el mecanismo más frecuente y está asociado con la actividad sismo-tectónica del planeta.

22 Hasta 1964 no existía un término específico en la mayoría de idiomas occidentales para referirse a este tipo de amenaza. Por tanto, la Unión Geofísica Internacional adoptó el término “tsunami”, para referirse en forma más exacta al fenómeno.
Según el origen del tsunami puede ser clasificado como cercano o lejano. El primero es aquel cuya fuente de perturbación se presenta a menos de 1000 kilómetros de distancia de la zona de impacto. Por su parte, los lejanos a más de 1000 kilómetros. Esta clasificación es importante para la operación de los Sistemas de Alerta, esto es, para Tsunami de Origen Cercano se cuenta en la mayoría de los casos con pocos minutos o algunas horas (como máximo dos), en tanto los Tsunami de Origen Lejano pueden tener tiempo de respuesta de hasta 22 horas (PNGRT, 2010).

Los tsunami generados por un terremoto son pronosticables a corto plazo, debido a que las ondas sísmicas se propagan a velocidades superiores al tsunami, lo cual permite aprovechar la diferencia de tiempo entre el arribo de las ondas sísmicas y de las olas, para la detección, alerta y evacuación de la población amenazada.

El riesgo de tsunami está determinado no solo por el comportamiento del evento amenazante sino por el grado de vulnerabilidad de las poblaciones costeras para enfrentar y recuperarse tras el mismo.

Colombia se ubica en una zona de amenaza sísmica alta, debido a su localización en el extremo noroccidental de Suramérica, donde confluyen tres placas tectónicas principales: Suramérica, Nazca y Caribe, Estas definen zonas de subducción en el Océano Pacífico y en el Mar Caribe, fuentes potenciales de origen de un tsunami (ver Ilustración 8).

Ilustración 15. Zonas de generación de sismos tsunamigénicos en el Océano Pacífico y el Mar Caribe

Si bien se encuentran comprometidas la costa Pacífica y caribe colombiana ante un fenómeno tsunamigénico, los mayores desastres han ocurrido sobre el Pacífico, esto ha tenido como consecuencia que se asocie este fenómeno con dicha región del país.

Las condiciones de los habitantes y la infraestructura localizada en áreas susceptibles a ser impactadas por un tsunami, como el caso de Cartagena, genera situaciones de riesgo que pueden llegar a convertirse en un desastre. Desde el punto de vista del riesgo por tsunami, la costa Pacífica
tiene mayor probabilidad de ocurrencia de este tipo de evento. Sin embargo, las mayores pérdidas podrían darse en la costa Caribe, debido a la concentración de población e infraestructura.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>LUGAR DE LA FUENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1530 – 1630 -1929</td>
<td>CUMANA (VENEZUELA)</td>
</tr>
<tr>
<td>1692</td>
<td>JAMAICA (PORT ROYAL)</td>
</tr>
<tr>
<td>1755</td>
<td>ANTILLAS MENORES Y CUBA</td>
</tr>
<tr>
<td>1842</td>
<td>HISPANIOLA, COSTA NORTE</td>
</tr>
<tr>
<td>1867</td>
<td>ISLAS VIRGENES, PUERTO RICO, GUADALUPE Y GRENA</td>
</tr>
<tr>
<td>1882</td>
<td>N DE PANAMA CENTRAL</td>
</tr>
<tr>
<td>1887</td>
<td>HAITI</td>
</tr>
<tr>
<td>1907</td>
<td>JAMAICA</td>
</tr>
<tr>
<td>1916</td>
<td>PANAMA OCCIDENTAL</td>
</tr>
<tr>
<td>1918</td>
<td>PUERTO RICO</td>
</tr>
<tr>
<td>1946</td>
<td>REP. DOMINICANA (NORTE), CUBA Y PUERTO RICO</td>
</tr>
</tbody>
</table>

Fuente: OSSO

A pesar de los esfuerzos realizados por entender la amenaza tsunamigénica, para evaluar la condición de riesgo se requiere conocer la vulnerabilidad de las comunidades e infraestructura ubicadas en la zona costera. Para ello es determinante adelantar estudios e integrar en su realización a las entidades territoriales y autoridades ambientales. Así mismo, es vital que sectores como el vial, telecomunicaciones, puertos, infraestructura esencial como la petrolera y el turismo, en el caso específico del distrito, entre otros, adelanten acciones para el conocimiento del riesgo y su intervención. Un evento de este tipo afectaría el sector histórico de Cartagena, así como la parte insular y en términos generales los sectores que se encuentran a orillas del mar abierto y de los drenajes que tienen comunicación directa con el mar.

8.6 Escenarios de Riesgo Asociados con Fenómenos de Origen Geológico: Remoción en Masa

Los fenómenos de remoción en masa son desplazamientos de masas de tierra o rocas por una pendiente en forma súbita o lenta y su ocurrencia depende de las siguientes variables:

- Clase de rocas y suelos.
- Orientación de las fracturas o grietas en el terreno.
- Cantidad de lluvia en el área.
- Actividad sísmica.
- Actividad antrópica.
- Erosión (por causas naturales y por actividad antrópica).

Son uno de los procesos geológicos más destructivos que afectan a los humanos, causando miles de muertes y daño en las propiedades por valor de decenas de billones de dólares cada año (BRABB, 1989), sin embargo muy pocas personas con conscientes de su importancia. El 90% de las
pérdidas por deslizamientos son evitables si el problema se identifica con anterioridad y se toman medidas de prevención y control (SUÁREZ, 1988).

La ubicación de la ciudad de Cartagena, así como las condiciones geológicas y geomorfológicas presentes en el área, se constituyen en amenazas naturales que han sido desencadenadas por la actividad antrópica no planificada en el desarrollo urbanístico de la ciudad.

Las altas pendientes, las condiciones particulares de los suelos, la geología local, así como las intervenciones inadecuadas del hombre sobre los taludes y laderas, influyen para que se den factores para este tipo de fenómenos, que se presentan especialmente en épocas invernales.

Las áreas más susceptibles a los fenómenos de remoción en masa se encuentran ubicadas alrededor de los diferentes cerros y lomas del distrito, en la Tabla 21 se observan los sectores con su respectivo nivel de riesgo estimativo.

Tabla 21. Niveles de riesgo estimativo y sectores susceptibles a fenómenos de remoción en masa en Cartagena de Indias D.T.C.

<table>
<thead>
<tr>
<th>Nivel de Riesgo Estimativo</th>
<th>Sector Identificado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel de Riesgo Estimativo Alto</td>
<td>Costados del Cerro de La Popa, Cerro Marión, Cerro Albornoz, Loma del Peyé, Mirador de Zaragocilla, Lomas del Sector del Espinal. Nuevo Bosque (Las Colinas, Manzanares), Nueve de Abril, San Pedro Martir, San Francisco, Nariño, Sinai, Piedra de Bolívar.</td>
</tr>
</tbody>
</table>
8.7 Escenarios de Riesgo Asociados con Fenómenos de Origen Geológico: Erosión Costera

La erosión costera o erosión litoral, implica la pérdida de los terrenos ubicados en la zona de encuentro entre el continente y el mar. Esta franja de terrenos puede tomarse como la parte más externa de la costa, e incluye también la plataforma marina somera, que abarca los fondos marinos hasta la profundidad de 10 metros.

El sector costero en el departamento de Bolívar, está conformado por geoformas de origen marino, fluvial y fluvio-marino como playas, tómbolos, flechas litorales (espigas), barras litorales, llanuras costeras, plataformas de abrasión, colinas y montañas. Todas estas unidades se caracterizan por presentar rasgos de erosión asociados tanto a las zonas de acantilados como a las zonas bajas (INEMAR, 2008).

La erosión de las playas se percibe en primera instancia por la desaparición gradual de las playas y por la formación y retroceso de los acantilados. Estos son fenómenos causados por factores, tanto naturales como antrópicos, que interactúan en muchas escalas de tiempo, desde minutos hasta miles de años.

De acuerdo con el Diagnóstico de la Erosión en la Zona Costera del Caribe Colombiano del Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andrés” –INEMAR- (2008), los sectores en los que se manifiesta de forma crítica este fenómeno son:

- Sector Galerazamba (municipio de Santa Catalina) – Punta Canoa (distrito de Cartagena de Indias): Este sector se caracteriza por una alternancia de franjas de acreción
(acumulación) y erosión fuertes. Los acantilados en Punta de Piedra y Punta Canoas presentan desprendimientos de bloques y socavación de la pata del talud por parte del oleaje, mientras que la erosión en algunos sectores de playa está representada por pendientes fuertes y pequeños escarpes de tormenta. Los procesos costeros contribuyeron, sin embargo, a la formación del tómbolo de isla Cascajo Cascajo y de las flechas litorales arenosas de Galerazamba, Punta de Piedra y Punta Canoas, las que recientemente se han visto afectadas por la erosión (LONÍN Y GIRALDO, 1996, en INVEMAR, 2008).

- Sector Punta Cano — El Morrito: En esta parte, zonas acantiladas alternan con barras (La Boquilla) y flechas litorales (Punta Cano). Al sur de Punta Cano, en Manzanillo del Mar, la erosión ha producido históricamente el retroceso costero y cabe destacar que la extracción de china ha contribuido parcialmente con este proceso. En los Morros y las playas ubicadas entre ellos la erosión es activa a pesar que la presencia de china favorece su estabilidad durante una época del año. Por su parte, Punta Giganta y Manzanillo del Mar se registran como zonas de erosión hídrica (LONÍN Y GIRALDO, 1996, en INVEMAR, 2008).

- Sector Punta Santo Domingo — Bocagrande: Se observa una zona de rompimiento fuerte que sigue la dirección de la costa, al parecer provocada por un bajo que indica la presencia de una flecha litoral aún sumergida (LONÍN Y GIRALDO, 1996, en INVEMAR, 2008). Las playas de Crespo y Bocagrande son de alta erosión, a pesar de todas las estructuras de protección que se han colocado. En su parte distal, el oleaje refracta alrededor de la punta de El Laguito y Castillogrande, en donde se han reportado procesos de erosión fuertes.

- Aunque en la bahía de Cartagena no se registran procesos erosivos fuertes, existe sin embargo propensión a la erosión moderada en el área de Mamonal. Frente a la desembocadura del Canal del Dique, en Pasacaballos, se desarrolla por el contrario un pequeño delta de tipo fluvial que forma dos barras, actualmente vegetadas, a ambos lados de la boca.

- La Isla de Barú registra procesos de erosión en el lado que enfila hacia el mar abierto y que afecta las terrazas coralinas así como el área más estrecha de la isla localizada aproximadamente en el centro.

- La bahía de Barbacoas no registra procesos de erosión sino de sedimentación, con formación de dos deltas a la salida de los caños Lequerica y Matunilla que provienen del Canal del Dique.

- La isla de Tierrabomba presenta hacia el mar litoral abrupto conformado por calizas arrecifales en donde se presentan procesos de erosión altos y cavernas. Del lado de la bahía, la costa, baja y cenagosa, se halla colonizada por manglares y en ella no se aprecian procesos erosivos. Son especialmente sensibles a la erosión el sector del Caño y el de Punta Gigante (INVEMAR, 2006a, en INVEMAR, 2008).
Casi toda la zona costera del departamento de Bolívar le corresponde al distrito de Cartagena, en ella, las áreas reportadas como críticas son costas bajas con geoformas de playas y barras, ocupación urbana y zona turística caracterizada por la presencia de múltiples obras de protección contra la erosión causada por el fuerte embate de las olas. Poblaciones menores, como las de Caños del Oro, Punta Gigante y Manzanillo del Mar, se hallan completamente desprotegidas y expuestas por lo tanto al oleaje, el cual ha producido un retroceso importante de la línea de costa (INVEMAR, 2006a, en INVEMAR, 2008).

Ilustración 17. Erosión litoral que produce el retroceso de la línea de costa en Tierrabomba.

Fuente: PNUD.

8.8 Escenarios de Riesgo Asociados con Fenómenos de Origen Geológico: Diapirismo de Lodos

El “volcanismo de lodos” se constituye en una de las manifestaciones de un fenómeno geológico denominado diapirismo de lodos. Este proceso se genera por la presencia en profundidad de material arcilloso de características plásticas y gases en condiciones de alta presión, que se moviliza hacia la superficie a través de fracturas o zonas de debilidad, generando tanto levantamientos y fracturamientos del terreno, como expulsión de lodos y gases por bocas de variadas formas y tamaños.

Los “volcanes de lodo” se muestran comúnmente como sitios donde la emanación de lodo es lenta y acompañada de un burbujeo intermitente de gas. Estos lodos se extienden lateralmente varios metros aprovechando la topografía del lugar (SERVICIO GEOLOGICO COLOMBIANO, 2013).

Este comportamiento pausado y lento, es ocasionalmente interrumpido con erupciones violentas de lodo y bloques de roca, que se constituyen en amenazas y riesgos para las personas que transiten o vivan en cercanías del lugar. Estos eventos se presentan asociados a grietas en el terreno del edificio “volcánico”, generación de flujos de lodo encausados por los drenajes, o formando mesetas de varias decenas de metros de diámetro y alturas del orden de los 2 metros.
lanzamiento violento de bloques rocosos en varias direcciones y localmente acompañadas de incendios generados por la ignición de gases (SERVICIO GEOLÓGICO COLOMBIANO, 2013).

Para el área urbana del distrito no existen reportes ni evidencias de la ocurrencia de este tipo de fenómenos, pero existen diferentes estudios por parte del Servicio Geológico Colombiano (antes INGEOMINAS), en los cuales se identifican los sectores de la zona rural e insular en las que se presenta el diapirismo de lodos. En la Tabla 23 se condigna la información de los sitios identificados, así como el nivel de riesgo estimativo.

Tabla 22. Niveles de riesgo estimativo y sectores en los que se manifiesta el diapirismo de lodos en Cartagena de Indias D.T.C.

<table>
<thead>
<tr>
<th>NIVEL DE RIESGO ESTIMATIVO</th>
<th>SECTOR IDENTIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>Vía variante a Mamonal Km 1 (antiguos terrenos de Álvarez y Collins), en un radio de 150 m a partir de los domos, límites con el municipio de Turbaco. Sector de Membrillal. Corregimiento de Bayunca Isla Tesoro (islas del Rosario, Punta Canoas, Punta de Barú, Arroyo de Piedra, El Recreo al sur de Pasacaballos.</td>
</tr>
<tr>
<td>Medio</td>
<td>Zona envolvente de 50 a 400 m a partir del límite de susceptibilidad alta.</td>
</tr>
<tr>
<td>Bajo</td>
<td>Zonas bajas de ladera donde no hay evidencia de actividad alrededor del límite de susceptibilidad media.</td>
</tr>
</tbody>
</table>

8.9 Escenarios de Riesgo Asociados con Fenómenos de Origen Antrópico:

Aglomeraciones en Público

De acuerdo con la definición que presenta el Decreto Distrital 633 de 2007 de Bogotá D.C.:

“Agglomeraciones en Público de Alta Complejidad: Son aquellas actividades que según variables específicas tales como: aforo, tipo de evento, clasificación de edad, lugar donde se desarrolla, entorno del lugar, dinámica del público, frecuencia, características de la presentación, limitación de ingreso, carácter de la reunión, etc., den lugar a riesgos públicos y generen afectación en la dinámica normal de la ciudad requiriéndose de condiciones especiales para el desarrollo de la actividad, con el ánimo de brindar un ambiente seguro tanto a usuarios, como a visitantes y en general a los actores que de forma directa o indirecta se ven favorecidos o afectados por el desarrollo de la aglomeración en público“.
Ejemplo de este tipo de eventos:

1. Eventos deportivos, especialmente partidos de fútbol profesional.
2. Eventos artísticos, conciertos o presentaciones musicales.
3. Eventos y/o celebraciones religiosas, cultos o alabanzas de gran aforo.
4. Eventos políticos, académicos, congresos o seminarios.
5. Ferias, exposiciones o bazares.
6. Marchas, comparsas o desfiles de alta afluencia de personas.
7. Eventos en teatros, cinemas, bares, restaurantes o discotecas.
8. Eventos circenses.
9. Eventos en centros comerciales, grandes almacenes o en edificios de prestación de servicios.
10. Corridas de toros en plazas.
11. Corralejas y fiesta populares o patronales.

Dentro de los posibles accidentes que se pueden presentar durante un evento de aglomeración de público se puede mencionar:

- Colapso de la estructura por sobrepeso: Toda construcción tiene un límite de resistencia en el peso y el volumen de los elementos que pueden alojar. Su sobrecarga puede causar el colapso o derrumbe de la construcción en forma repentina y violenta ocasionando muertes, heridas y pérdidas materiales.

- Pánico: Cualquier acción real o ficticia que genera pánico a una multitud puede ocasionar reacciones violentas e inesperadas, como por ejemplo las evacuaciones apresuradas con carácter de “estampidas” humanas, lo cual conlleva a que las personas se causen lesiones entre ellas mismas.

Los principales lugares de aglomeración de público en el distrito se encuentran en las Localidades 1 Histórica y del Caribe y en la Localidad 2 De La Virgen y Turística, en donde se concentran la mayoría de actividades de este tipo, siendo los más representativos:

- Centro de Convenciones Cartagena de Indias.
- Terminal Marítimo de Cartagena.
- Complejo Deportivo de la Villa Olímpica de Cartagena de Indias, que comprende: La Escuela de Formación del IDER, el Estadio de la Chiquinquirá (Estadio de Softbol Argemiro Bermúdez), el Complejo Acuático Jaime González Johnson y el Estadio de Beisbol Once de Noviembre.
- Estadio de Fútbol Jaime Morón León.
- Plaza de Toros de Cartagena.

8.10 Escenarios de Riesgo Asociados con Fenómenos de Origen Tecnológico: Derrames (líquidos y/o sólidos), fugas de gases y explosiones

Dadas las características de los fenómenos amenazantes y la relación directa que existe entre ellos, los derrames (líquidos o sólidos), las fugas de gases y las explosiones se han agrupado en un solo escenario para su respectivo análisis. El riesgo tecnológico se define como la probabilidad de que una sustancia produzca un daño en condiciones específicas de uso por fenómenos físicos, químicos y biológicos, los que ocasionan un número determinado de consecuencias a la salud, la economía y el ambiente mermando el desarrollo sostenible (INDECI, 2010).

Los accidentes que tiene que ver con fenómenos de origen tecnológico están casi siempre relacionados a la pérdida de contención de un producto tóxico o inflamable, mejor conocidos como materiales peligrosos, los cuales son transportados y almacenados frecuentemente en grandes cantidades. Un escape accidental de estos materiales presenta un peligro potencial para el ser humano y el ambiente.

En función del estado del mismo y de sus características, puede producirse un incendio, una explosión o la difusión de un producto tóxico en forma de nube tóxica o inflamable. A su vez, cada uno de estos accidentes presenta una serie de posibilidades: Si el escape es de un líquido se formará una balsa (en función de las condiciones topográficas del terreno, existencia de depresiones, etc.) y habrá evaporación. Si el producto es combustible, puede presentarse un incendio del líquido vertido, o puede formarse una nube que podrá inflamarse si encuentra su punto de ignición, con la consecuente explosión; ésta originará una onda de choque, la cual puede destruir otras instalaciones, provocando nuevos escapes (efecto “dominó”). Si el producto es
tóxico, la nube formada puede dispersarse en la atmósfera (si es menos pesada que el aire o si las condiciones atmosféricas son favorables) o puede desplazarse a ras del suelo, con el consiguiente peligro para la población.

Si el escape es una mezcla de líquido y vapor, como suele suceder en el caso de los gases licuados a presión, es probable la formación de una nube más pesada que el aire, con las mismas consecuencias que en el caso anterior.

En resumen lo que se puede tener finalmente es un incendio, una explosión o la difusión de un producto tóxico. A su vez, cada uno de estos accidentes presenta una serie de posibilidades: El incendio puede ser de líquido en un depósito o en una balsa, de un chorro de gas o vapor, o de una nube de vapor, la explosión puede ser confinada, no confinada o bien puede tratarse de un BLEVE (por sus siglas en inglés), con la posterior formación (en el caso de productos combustibles) de una bola de fuego; finalmente, el escape puede involucrar un gas más ligero que el aire, un gas neutro o un gas más pesado que el aire.

Son pocos los registros históricos que existen sobre eventos de este tipo en el distrito, porque en la mayoría de los casos no trascienden del ámbito interno de la empresa, aunque a nivel mundial existen suficientes numerosos registros de catástrofes de origen tecnológico.

A continuación se citan algunos de los casos que se han presentado en el distrito:

<table>
<thead>
<tr>
<th>Evento de origen tecnológico en la Zona Industrial de Mamonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVENTO</td>
</tr>
<tr>
<td>Explosión: Según la explicación de la OIT (1990), las</td>
</tr>
<tr>
<td>explosiones se caracterizan por una onda de choque que puede</td>
</tr>
<tr>
<td>producir un estallido y causar daños a los edificios, romper</td>
</tr>
<tr>
<td>ventanas y arrojar materiales a varios cientos de metros de</td>
</tr>
<tr>
<td>distancia**</td>
</tr>
<tr>
<td>Fuga de gases</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Fuente: CEDETEC (2010)

Dentro de las consecuencias sobre la población expuestas a este escenario de riesgo se tiene:

24 BLEVE: Booling Liquid Expanding Vapour Explosion, se entiende como la expansión explosiva de una masa de líquido que se evapora súbitamente.

Radiación térmica: Quemaduras de diversa gravedad, muerte por quemaduras.

Onda de choque:
Daños directos: Rotura de tímpano, aplastamiento de la caja torácica.
Daños indirectos: Por desplazamiento del cuerpo, por impacto contra el cuerpo de fragmentos, por heridas ocasionadas por astillas de vidrio.

Productos tóxicos: Intoxicación más o menos grave, muerte por intoxicación.

Aunque un evento de origen tecnológico puede presentarse en cualquier parte del distrito, la industria de Cartagena está concentrada en su mayor parte en la zona de El Bosque y Mamonal.

En la zona de El Bosque predominan la industria de alimentos, bebidas y servicios de transporte terrestre y marítimo. La zona de Mamonal ocupa un área de 4.100 hectáreas, con la presencia de 25 comunidades que albergan 80.000 habitantes aproximadamente, a lo largo de ella un corredor vial de 28 kilómetros, donde se ubican 210 empresas de distintos sectores productivos tales como: alimentos, energía, agroquímicos, cementero, petroquímico-plástico, petróleo-gas, químicos básicos y de servicios.

El nivel de riesgo estimativo más alto se encuentra en la Localidad 3 Industrial y de La Bahía, en la que se ubica el sector industrial de Mamonal, involucrando las comunidades de: Albornoz, Antonio José de Sucre, Arroz Barato, Bella Vista, Bernardo Jaramillo, Colinas de Villa Barraza, el Libertador, Henequen, Membrillal, Nelson Mandela, Pasacaballos, Policarpa, Puerta de Hierro, Villa Hermosa, Villa Barraza y 20 de julio, entre otras.

8.11 Escenarios de Riesgo Asociados con Fenómenos de Origen Tecnológico: Incendios

Los incendios estructurales son aquellos que se desarrollan en el interior de las construcciones realizadas por el hombre, como edificios, viviendas, industrias, instalaciones deportivas cerradas, bodegas, etc. Este tipo de incendios son los que más peligro y complejidad conllevan en cuanto a su forma de extinción, además de ser los que provocan grandes pérdidas materiales, ya que suelen ocasionar la destrucción de todo el contenido de la construcción e incluso al colapso de la edificación.

Producen afectación de viviendas, edificaciones, redes de servicio o de distribución, bodegas, fábricas, tanques en áreas urbanas o industriales, adicionalmente, lo normal es que las edificaciones estén ocupadas de personas, por lo que estos incendios implican también un grave riesgo, no solo material, sino también personal o humano.

Ocasionados enteramente por la acción humana, eventualmente se producen incendios urbanos provocados inconscientemente por causas diversas y variadas, entre ellas podemos mencionar: Factor eléctrico, aparatos productores de calor, líquidos inflamables, ignición espontánea, soldadura, cenizas y brasas, energía mecánica, provocados por pirómanos, cigarrillos y fósforos, etc. En este orden de ideas, se concluye que este tipo de eventos se puede presentar en cualquier área del distrito.

9. ESTRATEGIAS PARA LA ACCIÓN, PLANIFICACIÓN PRESUPUESTAL Y COSTOS

El objetivo principal del Plan Distrital para la Gestión del Riesgo de Cartagena de Indias, es formular acciones orientadas hacia el enfoque de los siguientes procesos: Conocimiento del riesgo, reducción del riesgo y manejo de desastres. El plan como tal, es un instrumento de planificación que involucra aspectos técnicos, administrativos, sociales y financieros, con ejes programáticos para el corto, mediano y largo plazo.

El enfoque de procesos que trae la Ley 1523 de 2012, es el punto de partida para identificar los componentes, las actividades y los productos del plan, dentro de estos la autoridad distrital tendrá la capacidad de vincular cada una de las acciones que se quieran formular, incluso aquellas que eran previamente implementadas en el territorio.

Por componentes se entienden los elementos que se deben implementar para gestionar el riesgo de manera integral, éstos se concretan a través de actividades específicas que finalmente generarán productos concretos de acción (Guía metodológica para la elaboración de Planes Departamentales para la Gestión del Riesgo. PNUD, 2012).

9.1 Conocimiento del Riesgo

Para el proceso de conocimiento del riesgo se contemplan los siguientes componentes:

1. Análisis y evaluación del riesgo.
2. Caracterización de escenarios de riesgo.
3. Monitoreo de fenómenos.

Estos tres componentes hacen referencia a la información sobre amenazas y vulnerabilidad que permiten conocer las situaciones de riesgo, para establecer las medidas de intervención pertinentes.

4. Integración de la gestión del riesgo en la planificación territorial y planes de desarrollo.
Hace referencia al trabajo de documentación, recolección de información y seguimiento que se debe realizar, para integrar y articular el plan, con los programas y proyectos regionales.

5. Comunicación del riesgo.

Este componente se relaciona con la estrategia de comunicación que se debe implementar a nivel distrital para divulgar la información relacionada con el manejo y preparación ante un desastre, con el objetivo de formular una cultura en gestión del riesgo, no solo entre los entes competentes sino también en la comunidad.
9.2 Reducción del Riesgo

Los componentes relacionados con el proceso de reducción del riesgo son:

1. Intervención prospectiva, mediante acciones de prevención que eviten la generación de nuevas condiciones de riesgo: Hace referencia a la planificación ambiental sostenible, al ordenamiento territorial, a la planificación sectorial, a la regulación y las especificaciones técnicas, a los estudios de prefactibilidad y diseños adecuados, al control y seguimiento, y en general a todos aquellos mecanismos que contribuyan de manera anticipada a la localización, construcción y funcionamiento seguro de la infraestructura, los bienes y la población.

2. Intervención correctiva, mediante acciones de mitigación de las condiciones de riesgo existentes: Este componente busca reducir el nivel de riesgo existente en la sociedad a través de acciones de mitigación, en el sentido de reducir las condiciones de amenaza, cuando sea posible, y la vulnerabilidad de los elementos expuestos.

3. Protección financiera: La protección financiera hace referencia a los mecanismos o instrumentos financieros de retención intencional o transferencia del riesgo que se establece en forma ex ante con el fin de acceder de manera ex post a recursos económicos oportunos para la atención de emergencias y la recuperación.

Cuando se habla de reducción del riesgo se hace referencia tanto a la disminución de las condiciones de riesgo existentes, como a las de riesgo futuro. Para la reducción del riesgo existente se deben implementar acciones correctivas o de mitigación del riesgo, dirigidas a minimizar la vulnerabilidad, la amenaza (cuando esto es posible) y en general los daños que se pueden presentar. Por su parte el riesgo futuro hace referencia a aquel que puede aparecer por tendencias inadecuadas del desarrollo municipal y se interviene a través de medidas implícitas en la planificación (SNPAD, 2010).

Las acciones de reducción del riesgo pueden ser de tipo físico (medidas estructurales) y no físico (medidas no estructurales). Es importante anotar que existen medidas no estructurales que solo los municipios, en este caso el distrito, pueden ejecutar, como son las que tienen que ver con el ordenamiento territorial y que constituyen acciones indispensables para la reducción de riesgos (Ver Anexo 1).
9.3 Manejo del Desastre

Dentro del proceso de manejo del desastre se contemplan los componentes de:

1. Preparación para la respuesta y ejecución de la respuesta frente a desastres: Los componentes de preparación para la respuesta frente a desastres, se refieren al conjunto de acciones principalmente de coordinación, sistemas de alerta, capacitación, equipamiento, centros de reserva, albergues y entrenamiento de personal, con el propósito de tomar medidas de forma anticipada ante los posibles desastres, mientras que la ejecución de la respuesta se refiere a la optimización en la puesta en práctica de los diferentes servicios básicos de respuesta, como accesibilidad y transporte, telecomunicación, evaluación de daños y análisis de necesidades, salud y saneamiento básico, búsqueda y rescate, extinción de incendios y manejo de materiales peligrosos, manejo de albergues y alimentación, disponibilidad de servicios públicos, seguridad y convivencia, aspectos financieros y legales, información pública y el manejo general de la respuesta, entre otros.

2. Preparación para la recuperación que se realiza en dos etapas: Rehabilitación y reconstrucción: Los componentes de preparación y ejecución de la recuperación, hacen alusión a las acciones para el restablecimiento de las condiciones normales de vida mediante la rehabilitación, reparación o reconstrucción del área afectada, los bienes y servicios interrumpidos o deteriorados y el restablecimiento e impulso del desarrollo económico y social de la comunidad. La recuperación tiene como propósito central evitar la reproducción de las condiciones de riesgo preexistentes en el área o sector afectado.

En el Anexo 1, se incluye la matriz de estrategias para la acción, en la cual se identifica en el Programa 3. Manejo de Desastres.

9.4 Planificación presupuestal y costos

El presupuesto permite planificar las estrategias de acción y la capacidad de intervención del distrito. De acuerdo con la Ley 1523 de 2012: “Las entidades del orden nacional, regional, departamental, distrital y municipal que hacen parte del sistema nacional, incluirán (...) las partidas presupuestales que sean necesarias para la realización de las tareas que le competen en materia de conocimiento y reducción de riesgos y manejo de desastres”.

Así mismo, la ley ordena la creación de fondos de gestión del riesgo, como cuentas especiales con autonomía técnica y financiera para invertir, destinar y ejecutar recursos para la implementación de las estrategias de acción que se han determinado en el plan, además permite establecer mecanismos de financiación destinados a las entidades involucradas en las acciones del plan o a la población afectada por la ocurrencia de un desastre.
El presupuesto tiene en cuenta los costos de cada uno de los programas derivados de las acciones estratégicas a ejecutar, además, se identificaron las fuentes de financiación con las que cuenta el distrito y los actores que pondrán los recursos para la implementación de estas acciones, los cuales se encuentran en las matrices correspondientes que se anexan al plan.

El presupuesto que se incluye en la Matriz de Estrategias para la Acción (Anexo 1), debe ser ajustado y revisado de acuerdo con los recursos disponibles para la Gestión del Riesgo con que cuente el distrito, cuyas fuentes de financiación pueden ser recursos propios, Sistema General de Participación, gestión institucional, gobierno departamental y/o nacional, así como aportes de la empresa privada.
10. LA GESTIÓN DEL RIESGO EN LA PLANIFICACIÓN TERRITORIAL

Es un hecho suficientemente comprobado la existencia de desórdenes territoriales provocado por la actividad económica que no supo valorar en su justa medida los objetivos sociales, ecológicos y culturales del progreso. Lo cual ha venido generando desigualdades en la calidad de vida entre los habitantes de las distintas regiones. Es por eso que desde finales de la Segunda Guerra Mundial en muchos países se viene diseñando como estrategia para superar tales desequilibrios el Ordenamiento Territorial (PNUD, 2011).

En el caso de Colombia, la Ley 388 de 1997 de Desarrollo Territorial, define los procedimientos y contenidos para la formulación de los Planes de Ordenamiento Territorial –POT-, señala los principales instrumentos de gestión y acción urbanística y define responsabilidades generales a diversas funciones municipales, distritales, departamentales y nacionales.

La finalidad del POT en los entes territoriales es mitigar y prevenir el deterioro ambiental causado por el proceso de urbanización, procurando una distribución justa y equilibrada de las cargas y los beneficios generados por el mismo proceso y mejorando el nivel y funcionamiento espacial de las poblaciones y ciudades; de tal forma que se logre una estructura urbana ambientalmente sustentable, socialmente más justa y funcionalmente más eficiente (IGAC, 1996).

La planificación de las actividades de gestión del riesgo debe estar sustentada en una estructura organizativa específica que asigne funciones y responsabilidades en los diferentes niveles territoriales: Nacional, departamental, distrital, municipal y local. Una vez establecida dicha estructura organizativa se procede a dar el paso siguiente, la planificación de las acciones. La planificación incluye el planteamiento de actividades en el marco del enfoque de procesos que presenta la ley 1523 de 2012: Conocimiento del riesgo (incluyendo la divulgación y sensibilización de la población frente a los riesgos y posibles desastres), reducción del riesgo (prevención y mitigación) y manejo de desastres (preparación). Para lo cual se requiere:

- Determinar la zona de interés: Depende del nivel administrativo en el que se quiere trabajar, en este caso el distrito de Cartagena de Indias.
- Conocer técnicamente cuáles son las amenazas que la afectan, las vulnerabilidades que posee y los niveles de riesgo que deben ser considerados; son actividades que surgen como resultado de la investigación y análisis del territorio.
- Identificar las estrategias que deben ser implementadas en casos generales para toda la población de la zona, o en casos particulares, cuando es sólo a nivel de una o varias comunidades. Este punto corresponde a la delimitación de la intervención, que puede ser para corregir un problema que ya exista o simplemente para evitar que se produzcan otros riesgos. Todo depende del territorio y del problema que se esté abordando.
Establecer las acciones de prevención, mitigación y preparación que deben ser ejecutadas según la tipología de riesgo y la población expuesta. Una vez se ha definido la estrategia, es necesario determinar el tipo de acción, es decir si la intervención va a ir orientada a controlar la amenaza, a reducir la vulnerabilidad o a generar capacidades para actuar en caso de algún evento inesperado; también puede ser que se apliquen los tres tipos de intervención.

Definir y obtener el compromiso de los actores institucionales y sociales que serán involucrados en la ejecución de las actividades.

Diseñar un plan de trabajo conjunto para el desarrollo de las actividades, en el que se determinen tiempos, responsables, recursos y productos.

Realizar un monitoreo permanente de los aspectos incluidos en la planificación y los resultados prácticos.

Después de identificar el problema, determinar la estrategia (si es algo que vamos a corregir, a controlar o evitar) y establecer el tipo de acción que emprenderemos, es necesario saber quién o quiénes asumirán la responsabilidad de ejecutar esas acciones, con qué presupuestos y en qué tiempos. Desde realizar una capacitación a la comunidad, hasta la construcción de una obra de mitigación, siempre debe haber una responsabilidad manifiesta. El tipo de acción que se haya decidido emprender determinará también, teóricamente, quién o quiénes deben asumir la responsabilidad.

10.1 Plan de acción

Para mejorar la acción del estado y la sociedad con fines de reducción de riesgos y prevención de desastres, se debe profundizar en el conocimiento de las amenazas naturales y causadas por el hombre accidentalmente, analizar el grado de vulnerabilidad de los asentamientos humanos y determinar las zonas de riesgo, con el fin de identificar los escenarios potenciales de desastres y formular las medidas para prevenir o mitigar sus efectos mediante el fortalecimiento institucional y a través de las acciones de mediano y corto plazo que se deben establecer en los procesos de planificación del desarrollo a nivel sectorial, territorial y de ordenamiento a nivel distrital.

La investigación y el conocimiento sobre riesgos de origen natural y antrópico constituyen la base tanto para la toma de decisiones como para la incorporación del criterio de prevención y mitigación en los procesos de planificación.

La prevención y mitigación de riesgos como criterio de planificación, debe estar presente en los procesos de toma de decisiones sobre el futuro económico y social a nivel local, municipal, departamental y nacional. Los instrumentos de planificación existentes sean regionales,
urbanos o sectoriales son fundamentales para garantizar inversiones más seguras y más benéficas desde el punto de vista social y económico.

10.2 El componente general de los planes de ordenamiento territorial

El Decreto 879 de 1998, define en el artículo 6, que los POT, señalados en el artículo 11 de la Ley 388 de 1997, contemplarán los componentes general, urbano y rural.

El componente general de los POT señalará los objetivos estratégicos y contenidos estructurales de mediano y largo plazo, lo cual incluye las acciones necesarias para aprovechar las ventajas comparativas y mejorar la competitividad del municipio o distrito; la definición de acciones estratégicas para alcanzar sus objetivos de desarrollo económico y social de conformidad con el plan de desarrollo, y las políticas de largo plazo para la ocupación y manejo del suelo y demás recursos naturales. Este componente debe desarrollar un modelo de ocupación del territorio que posibilite identificar, delimitar y definir la localización de los siguientes aspectos estructurantes:

1. Los sistemas de comunicación entre las áreas urbanas y rurales del municipio o distrito y de éste con los sistemas regionales y nacionales.

2. Las medidas para la protección del medio como ambiente, conservación de los recursos naturales y defensa del paisaje así como el señalamiento de áreas de reserva y de conservación y de protección del patrimonio histórico, cultural y arquitectónico y ambiental.

3. La determinación de zonas de alto riesgo para la localización de asentamientos humanos.

4. La localización de actividades, infraestructuras y equipamientos básicos, expresados en los planes de ocupación del suelo, el plan vial y de transporte, el plan de vivienda social, los planes maestros de servicios públicos, el plan de determinación y manejo del espacio público.

5. La clasificación del territorio en suelo urbano, rural y de expansión urbana, con la correspondiente determinación del perímetro urbano que no podrá ser mayor que el perímetro de servicios públicos.

Parágrafo: Todas las decisiones y definiciones de política del contenido estructural del componente general se traducen en normas urbanísticas estructurales, que prevalecen sobre las demás normas urbanísticas y sólo pueden modificarse con motivo de la revisión general del plan o excepcionalmente a iniciativa del alcalde, cuando por medio de estudios técnicos se demuestre que debido a cambios en las circunstancias y evolución del municipio o distrito dicha modificación se hace necesaria.
Áreas expuestas a amenazas y riesgos:

Objetivo de largo plazo:

Reducir los riesgos de origen natural o antrópico en el distrito, a través de la adopción de acciones y estrategias muy precisas que permitan mejorar la capacidad técnica, administrativa, operativa y social de las instituciones y comunidades, a fin de manejar los riesgos existentes, evitar la generación de nuevos riesgos y limitar las pérdidas ocasionadas por los desastres.

Objetivos específicos:

Objetivo 1. Monitoreo de procesos sociales y naturales.

Es necesario tener presente en la toma de decisiones, el carácter dinámico y cambiante de los riesgos, por ello se debe realizar un monitoreo permanente de los procesos susceptibles de generar amenazas de distinto origen o modificar los factores de vulnerabilidad existentes. El desarrollo de la región va a mostrar una naturaleza siempre cambiante del riesgo; deben por lo tanto existir mecanismos permanentes de evaluación y actualización.

Estrategias:

1. Realizar estudios técnicos para evaluar los riesgos naturales y antrópicos que afectan al distrito.

2. Implementar medidas de prevención y mitigación para la reducción del riesgo en las zonas urbanas y rurales, según los estudios técnicos.

3. Definir e implementar sistemas de monitoreo de amenazas según las distintas tipologías de riesgo que existen en el distrito.

4. Realizar la evaluación técnica de riesgos para la viabilidad de obras de desarrollo en el distrito: Urbanizaciones, vías, puentes, etc.

5. Analizar la vulnerabilidad física y estimar el riesgo de las infraestructuras urbanas, edificaciones esenciales y líneas vitales.

6. Adoptar los estudios técnicos realizados y las directrices en el tema de Gestión del Riesgo según la Ley 1523 de 2012, además de los criterios de aplicación que deben ser definidos por el Consejo Distrital de Gestión del Riesgo y las autoridades ambientales, la Corporación Autónoma Regional del Canal del Dique –CARDIQUE- y el Establecimiento Público Ambiental –EPA- Cartagena.

Objetivo 2: Decisión política.

Relacionada con la ejecución de las actividades en todas las etapas de la gestión del riesgo: Prevención, mitigación, preparación, respuesta, rehabilitación y reconstrucción. En este ámbito se
involucra el desarrollo y gestión de todos los procesos, no sólo desde el punto de vista financiero, sino institucional.

Estrategias:

1. Impulsar el desarrollo de planes, programas y proyectos para la reducción integral de los riesgos a nivel urbano y rural.

2. Promover la asignación de recursos para la gestión del riesgo en el presupuesto distrital y la puesta en funcionamiento del Fondo Distrital de Gestión del Riesgo.

3. Elaborar instrumentos y normas para la consideración del riesgo como factor determinante en la toma de decisiones relacionadas con la planificación y el desarrollo territorial en todo su contexto.

4. Fortalecer la normatividad y realizar seguimiento a la intervención física en sectores urbanos de especial vulnerabilidad como llenos antrópicos, retiros de quebradas (incluidos colectores) y zonas de riesgo mitigable.

5. Adelantar un estudio de vulnerabilidad que permita implementar un plan de acción y mecanismos normativos para la demolición, reforzamiento o rehabilitación de edificaciones con vulnerabilidad física alta o afectadas por eventos naturales o antrópicos que pongan en peligro a la población.

6. Vigilar el cumplimiento y aplicación correcta de normas y códigos de sismo resistencia para construcciones.

7. Adelantar planes de construcción de viviendas de interés social para reubicación de familias en asentamientos de desarrollo inadecuado e incompleto.

8. Generar mecanismos para garantizar el cumplimiento de las normas de seguridad para el manejo adecuado de riesgos tecnológicos.

Objetivo 3. Fortalecimiento institucional.

Debe existir un liderazgo por parte de las diferentes instituciones locales y organismos del estado, para abordar la gestión del riesgo en sus diferentes aspectos y componentes, así mismo se debe garantizar el óptimo funcionamiento de las entidades que directa o indirectamente se relacionan con el tema, esto incluye recurso humano, financiero y tecnológico.

27 Riesgos tecnológicos derivados del manejo y manipulación de sustancias explosivas y peligrosas.
Estrategias:

1. Mejorar la estructura de coordinación y funcionamiento de la Oficina Distrital de Gestión del Riesgo de Cartagena de Indias.

2. Promover y facilitar la incorporación permanente y activa de representantes de los distintos sectores sociales e institucionales al Consejo Distrital de Gestión del Riesgo.

3. Garantizar la disposición de insumos y logística para la formulación e implementación de los planes de prevención, mitigación, respuesta y recuperación.

4. Implementar proyectos para el fortalecimiento de las capacidades locales para la reducción del riesgo y la respuesta a emergencias y desastres.

5. Realizar procesos de capacitación y entrenamiento al personal de las instituciones para la ejecución de tareas generales o específicas en gestión del riesgo: Conocimiento del riesgo, reducción del riesgo y manejo de desastres.

6. Diseñar e implementar redes de información para la gestión local del riesgo.

7. Diseñar, desarrollar y actualizar en forma permanente la Estrategia de Respuesta a Emergencias y los planes específicos de contingencia, frente a los diferentes tipos de amenaza.

Objetivo 4. Socialización de riesgos y participación ciudadana.

La participación ciudadana debe verse en un sentido muy amplio, puesto que involucra todo el colectivo comunitario y su responsabilidad en las diferentes etapas orientadas al manejo de los riesgos y control de los impactos generados por los desastres. Desarrollar procesos de socialización de riesgos a las instituciones y comunidades del distrito, en busca de un cambio de actitud que facilite la adaptación de acciones concretas para la reducción del riesgo y atención de desastres.

Estrategias:

1. Diseñar e implementar planes comunitarios para la gestión del riesgo.

2. Implementar procesos para la conformación y funcionamiento de los comités barriales de emergencias.

3. Desarrollar programas de educación pública para la socialización en forma masiva de los temas relacionados con el manejo de riesgos y la respuesta a desastres.
4. Implementar estrategias pedagógicas y comunicacionales a los habitantes sobre el riesgo de habitación y permanencia en zonas de peligro y laderas en condiciones de amenaza natural.

5. Formular e implementar en los centros educativos del distrito, los planes escolares de gestión del riesgo.\(^{28}\)

6. Formular e implementar planes de prevención y respuesta en escenarios deportivos, teatros, edificaciones públicas y sitios de congregación masiva de público.

7. Generar una estrategia de información pública y comunicación para el desarrollo orientada a la gestión de riesgos.

8. Impulsar la adecuación curricular de la educación, incorporando la Gestión del Riesgo al Proyecto Educativo Institucional –PEI–.

10.3 El componente urbano de los planes de ordenamiento territorial

El componente urbano de los POT, está constituido por las políticas, acciones, programas y normas para encauzar y administrar el desarrollo físico urbano. Integra políticas de mediano y corto plazo, procedimientos e instrumentos de gestión y está insertado y supeditado al componente general del plan.

En lo que se refiere a suelo urbano y áreas de expansión urbana, este componente deberá contener por lo menos, los siguientes elementos:

1. Las políticas a mediano y corto plazo sobre uso y ocupación, en armonía con el modelo estructural de largo plazo adoptado en el componente general.

2. La localización y dimensionamiento de la infraestructura para: el sistema vial y de transporte, previendo la adecuada intercomunicación del conjunto de las áreas urbanas y su ampliación a las zonas de expansión; las redes primarias y secundarias de servicios públicos en el corto y mediano plazo; los equipamientos colectivos y espacios libres para parques y zonas verdes públicas; y las cesiones urbanísticas gratuitas para todas las anteriores.

3. La delimitación de las áreas de conservación y protección de recursos naturales y paisajísticos, de conjuntos urbanos históricos y culturales, y de áreas expuestas a amenazas y riesgos naturales.

\(^{28}\) Articulados al PEI (Proyecto Educativo Institucional) y PRAES (Proyectos Ambientales Escolares).
4. La determinación de los tratamientos y actuaciones urbanísticas aplicables a cada área, así como las zonas receptoras y generadoras de los derechos transferibles de construcción y desarrollo previstos en el Decreto Ley 151 de 1998.

5. La estrategia de mediano plazo para el desarrollo de programas de vivienda de interés social, incluyendo las de mejoramiento integral. La estrategia de vivienda incluirá directrices y parámetros para la localización de los terrenos necesarios para atender la demanda de vivienda de interés social, y los instrumentos de gestión correspondientes. También comprende mecanismos para la reubicación de los asentamientos en zonas de alto riesgo.

6. Las estrategias de crecimiento y reordenamiento de la ciudad, y los parámetros para la identificación y declaración de inmuebles y terrenos de desarrollo y construcción prioritaria.

7. La determinación de las características de las unidades de actuación urbanística.

8. La determinación de las áreas morfológicas homogéneas entendidas como las zonas que tienen características análogas en cuanto a las tipologías de edificación, así como por los usos e índices derivados de su trama urbana original.

9. La especificación, si es el caso, de la naturaleza, alcance y área de operación de los macroproyectos urbanos cuya promoción y ejecución se contemple a corto y mediano plazo. Lo anterior comprende de la definición de sus directrices generales de gestión o financiamiento y las autorizaciones indispensables para emprenderlos.

10. La adopción de directrices y parámetros para los planes parciales, incluyendo la definición de acciones urbanísticas, actuaciones, instrumentos de financiación y otros procedimientos aplicables.

11. La definición de los procedimientos e instrumentos de gestión en actuaciones urbanísticas requeridos para la administración y ejecución de las políticas y disposiciones adoptadas.

12. La adopción de instrumentos para financiar el desarrollo urbano, tales como la participación municipal o distrital en la plusvalía y la emisión de títulos de derechos adicionales de construcción y desarrollo y los demás contemplados en la Ley, determinando las zonas o subzonas beneficiarias de una o varias de las acciones urbanísticas generadoras de la participación en plusvalía.
Áreas expuestas a amenazas y riesgos

El análisis de riesgos es un proceso de valoración del riesgo por medio de la identificación, evaluación y análisis de incidencia de sus factores, orientado a la toma de decisiones sobre la aplicación de medidas de intervención. Incluye la formulación y diseño de las medidas de manejo del riesgo. Se realiza sobre escenarios específicos de acuerdo con las características físicas, sociales y económicas de la región (Red de Riesgos, 2007).

Los principales fenómenos que definen las condiciones de amenaza en las zonas urbanas son:

- Sismos.
- Movimientos de remoción en masa.
- Inundaciones.

Objetivo a corto y mediano plazo

Incorporación del riesgo en los procesos de planeación y ordenamiento territorial del distrito, con el fin de establecer medidas no estructurales para la prevención y mitigación, orientadas a la reducción del riesgo existente y evitar la generación de nuevos riesgos a futuro.

La Administración realizará los estudios sobre amenaza, vulnerabilidad y riesgo en el distrito para fortalecer la Gestión Local del Riesgo. Estos estudios comprenden la zonificación de la amenaza natural, socio-natural y antrópica, así como el análisis de la vulnerabilidad total, entendida como la sumatoria de las vulnerabilidades física, social, económica e institucional y por último realizará la zonificación del riesgo. Los estudios deberán ser terminados antes de la finalización del corto plazo del POT.

De acuerdo con la zonificación definida en estos estudios, se deben implementar los siguientes objetivos y estrategias para la reducción del nivel de riesgo por fenómenos de remoción en masa e inundación.

Objetivos específicos:

Objetivo 1. Protección del suelo por amenazas y riesgos

Se deben definir como Suelos de Protección, aquellos que por considerarse de riesgo alto no mitigable, no pueden ser destinados para uso urbano, sino para uso forestal o recreacional.

Se entiende por Riesgo Alto No Mitigable, cuando la ocurrencia de un evento de inundación y/o de remoción en masa, en un área determinada y en un corto plazo podría ocasionar pérdidas físicas, económicas y sociales, y no es posible realizar obras de mitigación o no son viables económica y/o socialmente, siendo necesaria su reubicación.
Estrategias:

Para la reducción del nivel de riesgo por fenómenos de remoción en masa e inundación, se deben plantear las siguientes estrategias:

- En las zonas de alto riesgo no mitigable:

La reubicación preventiva de asentamientos localizados en zonas de alto riesgo no mitigable, busca mitigar el riesgo modificando los niveles de vulnerabilidad de dichos asentamientos.

Son políticas para la reubicación de familias en riesgo:

- Fortalecimiento del programa de reubicación de las familias localizadas en zonas de alto riesgo, con prioridad para aquellas de alto riesgo no mitigable por inundación y/o remoción en masa.
- La inclusión en el programa de reubicación de las familias localizadas en las áreas requeridas para la construcción de obras de mitigación de riesgos de beneficio común.
- El diseño y desarrollo del programa de acompañamiento social del reasentamiento para minimizar los impactos a la población a ser reasentada, así como para facilitar el ingreso al nuevo entorno socioeconómico.
- Adelantar programas de rehabilitación en las zonas donde se realice la reubicación, con el objeto de mejorar las condiciones físicas y ambientales del sector.
- Demarcación física y señalización de los suelos de protección por alto riesgo, para evitar su ocupación e integrarlos a programas de rehabilitación, a través de las entidades encargadas de protección y control ambiental.

Objetivo 2. Suelos de tratamiento especial por riesgo

Se deben considerar Zonas de Tratamiento Especial por Riesgo, las que requieren de una intervención directa por parte del estado para su incorporación al modelo de ordenamiento.

Corresponden a las Zonas de Alta Amenaza ocupadas por asentamientos con tipología de vivienda vulnerable a fenómenos de remoción en masa e inundación, donde las condiciones de servicios públicos, infraestructura y equipamiento comunitario son deficientes y por lo tanto, generadoras de agentes detonantes que aceleran estos fenómenos.

Estrategias

Para estas zonas se deben proponer las siguientes acciones:

- Incorporación cartográfica del barrio al mapa digital del distrito.
- Legalización de barrios y normalización de servicios públicos.
- Estudios de zonificación detallada de amenazas y riesgos.
- Delimitación de áreas de protección por amenaza alta no ocupadas.
- Identificación de viviendas en alto riesgo e incorporación a programas de reubicación.
Identificación de sitios de riesgo mitigable para ejecución de obras de protección y control.
Plan integral de recuperación de áreas de alto riesgo.

Objetivo 3. Plan estratégico de gestión del riesgo

Las medidas de prevención y mitigación de riesgos deben considerarse como parte fundamental de los procesos de desarrollo integral a nivel regional y urbano. Dado que los fenómenos de remoción en masa e inundación pueden generar gran impacto en las comunidades expuestas, es necesario incorporar los análisis de riesgos a los estudios sociales y económicos del distrito.

Estrategias:

Para la reducción del nivel de riesgo por fenómenos de remoción en masa e inundación, se deben plantear las siguientes estrategias:

- En las zonas de alto riesgo mitigable:
 - Estudios detallados que permitan identificar y diseñar las medidas de mitigación, en las zonas de tratamiento especial para la mitigación de riesgos por fenómenos de remoción en masa.
 - Construcción de obras de mitigación en las zonas estudiadas que permitan reducir el nivel de riesgo del sector.
 - Reubicación de las familias cuyas viviendas ocupen espacios requeridos para la construcción de las obras de mitigación.

- Incorporar como zonas de tratamiento especial los nuevos sectores, que por condiciones naturales o antrópicas no intencionales así lo requieran:
 - Adelantar los estudios detallados de amenaza y riesgo en los sitios donde se presentan emergencias por fenómenos de remoción en masa.
 - Ampliar la cobertura de los estudios de amenaza por inundación a los afluentes que conforman las microcuencas tributarias de la cuenca principal.

- Conocimiento e implementación de medidas de protección y control en las zonas de alta amenaza no ocupadas:
 - Incorporar como Suelo de Protección, zonas de alta amenaza que no estén ocupadas, las cuales por resultado de estudios detallados así lo determinen.
 - Desarrollo de mecanismos para la vigilancia y control de las zonas definidas como Suelos de Protección por Alto Riesgo.

- Monitoreo de las amenazas:
 - Crear redes de monitoreo hidrometeorológico y geotécnico para definir acciones de prevención y alertas tempranas.
- Condicionamientos para futuros desarrollos urbanísticos:

Para los futuros desarrollos urbanísticos en Zonas de Amenaza Alta y Media por Fenómenos de Remoción en Masa e Inundación, se establecen las siguientes propuestas:

- Para la solicitud de licencias de urbanismo y construcción se debe anexar al estudio de suelos, un análisis detallado de amenazas y riesgos para el futuro desarrollo, el cual debe incluir el diseño de las medidas de mitigación.

- Para la solicitud de los permisos de ventas, se requiere tener implementadas las medidas de mitigación propuestas, las cuales deberán garantizar la estabilidad, funcionalidad y habitabilidad de las viviendas y en general de todos los elementos que contiene dicho desarrollo.

Con base en la información que se obtenga, se deben definir a nivel general restricciones y condicionamientos para la ocupación del territorio (tanto en áreas ocupadas como para áreas no ocupadas), determinantes para el ordenamiento frente al riesgo de deslizamientos (ver Tabla 24) y de inundaciones (ver Tabla 25).

Tabla 24. El riesgo de deslizamientos como determinante para el ordenamiento

<table>
<thead>
<tr>
<th>RIESGOS</th>
<th>LOCALIZACIÓN SEGURA</th>
<th>CONSTRUCCIÓN SEGURA</th>
<th>ACTIVIDADES SEGURAS</th>
</tr>
</thead>
</table>
| **Restricciones** | • Áreas no ocupadas con procesos activos.
• Áreas en riesgo mitigable.
• Localización de edificaciones esenciales en áreas de alta amenaza. | • No deben permanecer edificaciones o infraestructura existente en áreas de riesgo no mitigable. | • Actividades productivas que incrementen factores de inestabilidad (minería, agricultura y ganadería, entre otros). |
| **Condiciones** | • Áreas no ocupadas en condición de amenaza sin restricción.
• Áreas en riesgo mitigable. | • Estudios complementarios de detalle.
• Diseño y construcción de obras de mitigación.
• Pólizas de estabilidad. | • Estudios de detalle para la operación de redes y continuidad de funciones estratégicas de la ciudad. |

29 PREDECAN, 2008.
Tabla 25. El riesgo de inundaciones como determinante para el ordenamiento 30.

<table>
<thead>
<tr>
<th>RIESGOS</th>
<th>LOCALIZACIÓN SEGURA</th>
<th>CONSTRUCCIÓN SEGURA</th>
<th>ACTIVIDADES SEGURAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricciones</td>
<td>• Áreas no ocupadas en rondas hidráulicas.</td>
<td>• No deben permanecer edificaciones o infraestructura existente en áreas de inundación crítica.</td>
<td>• Actividades industriales que puedan desencadenar riesgos tecnológicos.</td>
</tr>
<tr>
<td></td>
<td>• Áreas no ocupadas expuestas a inundaciones críticas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Localización de edificaciones esenciales.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condiciones</td>
<td>• Áreas no ocupadas expuestas a inundaciones no críticas.</td>
<td>• Normas específicas para la ubicación de tanques de agua potable y sistemas de drenaje.</td>
<td>• Delimitación de actividades estacionales productivas e industriales.</td>
</tr>
<tr>
<td></td>
<td>• Áreas en riesgo mitigable.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Obligatoriedad de análisis de amenazas y riesgos:**

Todas las entidades públicas y privadas encargadas de la prestación de los servicios públicos, que ejecuten obras de gran magnitud o que desarrollen actividades industriales o de cualquier naturaleza que sean peligrosas o de alto riesgo, deberán realizar el análisis de riesgos, que contemplan y determinen la probabilidad de ocurrencia de desastres en sus áreas de jurisdicción o influencia.

Objetivo 4. Plan de mejoramiento integral

Esta actividad está enfocada a dar un tratamiento urbanístico global a la zona, en aras de generar un cambio radical en la forma de vida de la comunidad, ya que su objetivo es mejorar la calidad de vida de la población y cuyo desarrollo ha generado procesos de degradación de las condiciones físicas y ambientales de la zona.

Este plan contempla la planificación y ejecución integral de todas las actividades de mitigación y prevención no estructurales y estructurales que obedezcan a estudios detallados, como alternativas de mitigación independientes y que a través de su formulación en conjunto, permitirá la integración de los esfuerzos y recursos de todas las entidades del distrito y de las autoridades ambientales, ya que implica atacar de lleno las deficiencias generadas en la infraestructura física y social por el desarrollo urbanístico, por medio de acciones masivas, integrales y plenamente coordinadas.

30 PREDECAN, 2008.
El plan de mejoramiento integral comprende la ejecución de obras de mitigación y control del riesgo, que corresponden a las medidas que se planteen para el manejo de las amenazas por inundación, socavación e inestabilidad de márgenes. Se consideran obras que se deben ejecutar a corto plazo. Adicionalmente se debe realizar la conformación de zonas de aislamiento y protección a las que puede darse un uso de tipo recreativo.

Estrategias:

Se propone la implementación de las siguientes medidas de mitigación no estructurales:

- **Regulación del uso del suelo:** Se refiere a la restricción normativa de uso del suelo que se debe aplicar en las márgenes de los ríos y quebradas y en los sectores afectados por inestabilidad de márgenes, áreas determinadas como Zonas de Amenaza Relativa Alta.

Las medidas no estructurales planteadas buscan que el uso del suelo para vivienda en las zonas referidas sea evitado en beneficio de la estabilidad física y ambiental de las márgenes de ríos y quebradas. En general es necesario que se respeten las zonas de protección ambiental definidas dentro de las acciones de gestión del riesgo.

El uso recomendado para estas áreas de protección ambiental es de zonas verdes y de recreación, y han sido restringidas no sólo por su condición de amenaza, sino por su importancia ambiental dentro del entorno urbano de los asentamientos.

- **Reubicación de Viviendas:** Al igual que sucede en el resto de municipios de Colombia y en general de Latinoamérica, las familias generalmente de más bajos recursos, bien sea por el precio barato de la tierra o por procesos de invasión, fueron desarrollando sus viviendas en sectores periféricos del casco urbano, en zonas no aptas para la construcción, debido a que se presentan fuertes pendientes o por que se localizan en antiguas llanuras de inundación de ríos y quebradas. En otras circunstancias, a través de “Planes de Vivienda”, a los que se les ha dado permiso de construcción sin la previa contemplación y verificación de la aptitud del suelo y de la zona para edificar, se ha generado nuevas áreas de riesgo cuyas viviendas y habitantes presentan diferentes grados de vulnerabilidad ante fenómenos naturales como inundaciones y deslizamientos.

Nota Aclaratoria: Para obtener el inventario de viviendas se debe recopilar y consolidar la siguiente información:

- Caracterización socioeconómica de los barrios y/o sectores a intervenir.
- Mapa de Zonificación del Riesgo.

Además de actividades concretas como la evaluación de la relación costo-beneficio; actividad que está orientada a definir las inversiones a ejecutar de acuerdo al análisis adelantado y que determine la necesidad de reubicación de viviendas o la construcción de obras de mitigación según el caso (estabilización de taludes, protección de laderas, entre otros).

Las viviendas que se deben reubicar corresponden a las que se encuentren en proceso de ruina como resultado de los procesos que afectan los distintos sectores de la zona urbana. La
reubicación de familias se debe hacer para evitar afectaciones debidas a fenómenos de inestabilidad y socavación, y para consolidar la zona de protección del río (ronda) y el manejo urbano de la zona.

- **Adecuación Paisajística del Área:** Esta actividad debe involucrar las zonas de restricción por inundación e inestabilidad de márgenes, y las áreas de protección del sistema ecológico del distrito, contemplando tanto el adecuado manejo de las aguas de escorrentía como la recuperación de la cobertura vegetal y control de los procesos erosivos presentes en las márgenes de los ríos y quebradas.

- **Delimitación de la Ronda y Zona de Protección y Manejo Ambiental de los ríos y quebradas:** Es indispensable que conjuntamente con la conformación de la zona de manejo y protección ambiental, se delimite geográficamente la ronda de los ríos y de las quebradas que discurren por centros poblados, en ambas márgenes, en cumplimiento de las normas de protección y preservación de cauces establecidas en la normatividad y en los planes de ordenamiento de los municipios, de tal manera que se proteja y blinde su cauce, reactivando y protegiendo además la vegetación de ribera.

- **Información pública:** Esta actividad busca suministrar mediante campañas educativas la información y capacitación necesaria para mejorar la actitud de la comunidad frente a su medio físico, su entorno habitacional y ambiental. Para esto los municipios y/o distritos deben realizar campañas educativas participativas que lleven a la comunidad a entender y apropiar los conceptos de:

 1. La amenaza a que están expuestos, tanto en las áreas urbanas no consolidadas del sector como en los sectores de urbanismo consolidado que se encuentran en zonas de amenaza.

 2. Identificación de agentes contribuyentes a los fenómenos de inundación e inestabilidad de márgenes y cómo debe ser el comportamiento frente a los mismos.

 3. Beneficios de las obras recomendadas para la mitigación del riesgo y cómo debe ser la construcción y el mantenimiento de las mismas.

 4. Manejo ambiental y mejoramiento de la calidad de vida de sus habitantes. Se debe incluir el seguimiento y monitoreo a los cauces de las quebradas que presentan comportamiento torrencial respecto a la ocurrencia de obstrucciones o taponamientos que puedan desencadenar en la ocurrencia de inundaciones.

 5. Implementación de sistemas de alarma y planes de contingencia para que la población conozca las acciones a seguir en caso de que se presenten eventos de inundaciones o de inestabilidad.

Estas campañas deben ser realizadas por cada una de las entidades responsables mediante charlas, talleres participativos, cartillas de fácil entendimiento y divulgación, entre otros que permitan la adecuada apropiación de los conceptos.
10.4 El componente rural en los planes de ordenamiento territorial

El componente rural de los POT, estará constituido por las políticas, acciones, programas y normas para orientar y garantizar la adecuada interacción entre los asentamientos rurales y la cabecera municipal, así como la conveniente utilización del suelo.

El componente rural del Plan es un instrumento para garantizar la adecuada interacción entre los asentamientos rurales y su cabecera municipal, así como la conveniente utilización del suelo rural, además de enmarcar las actuaciones públicas tendientes a suministrar infraestructura y equipamiento básico para el servicio de la población rural.

Este componente está insertado y supeditado al componente general del Plan y deberá contener por lo menos, los siguientes elementos:

1. Las políticas de mediano y corto plazo sobre ocupación del suelo en relación con los asentamientos humanos localizados en estas áreas.

2. El señalamiento de las condiciones de protección, conservación y mejoramiento de las zonas de producción agropecuaria, forestal o minera.

3. La delimitación de las áreas de conservación y protección de los recursos naturales, paisajísticos, geográficos y ambientales, de las zonas de amenaza y riesgo de las que forman parte del sistema de provisión de servicios públicos domiciliarios o de disposición de desechos.

4. La localización y dimensionamiento de zonas determinadas como suburbanos con precisión de índices máximos de ocupación y usos admitidos, teniendo en cuenta su carácter de desarrollo de baja ocupación y baja densidad, las posibilidades de suministro de agua potable y saneamiento básico y las normas de conservación y protección del medio ambiente.

5. La identificación de los centros poblados rurales y la adopción de las previsiones necesarias para orientar la ocupación de sus suelos y la adecuada dotación de infraestructura de servicios básicos y de equipamiento social.

6. La determinación de los sistemas de aprovisionamiento de los servicios de agua potable y saneamiento básico de las zonas rurales a corto y mediano plazo y la localización prevista para los equipamientos de salud y educación.

7. La expedición de normas para la parcelación de predios rurales destinados a vivienda campestre, las cuales deberán tener en cuenta la legislación agraria y ambiental.
Áreas expuestas a amenazas y riesgos

Las condiciones de amenaza como factor determinante de la situación de riesgo en el distrito, están definidas principalmente por los aspectos fisiográficos, climáticos y de intervención social y económica propios de la región.

A pesar de que no existe un marco de referencia bien documentado que integre las condiciones de amenaza a nivel distrital, se puede establecer que los principales fenómenos amenazantes en las zonas rurales del distrito son del mismo tipo de los que predominan en las zonas urbanas: Hidrometeorológicos, geológicos, de origen tecnológico y antrópicos. Sin embargo, lo que si marca la diferencia son las particularidades fisiográficas, climatológicas y de actividad socioeconómica, que determinan la mayor o menor incidencia de estos fenómenos en las condiciones de amenaza, vulnerabilidad y riesgo en la zona rural.

Teniendo en cuenta lo anterior, en la zona rural se deben implementar los mismos objetivos y estrategias que se consideran para las zonas urbanas.

Para las zonas rurales se pueden elaborar Mapas de Susceptibilidad Indicativa a Movimientos en Masa, que agrupa áreas con mayor o menor probabilidad de afectación o inestabilidad del terreno, de acuerdo con las características geológicas, geomorfológicas y morfométricas del mismo.

Nota aclaratoria: Los mapas de susceptibilidad son de carácter indicativo, constituyéndose en punto de partida para las evaluaciones de amenaza por fenómenos de remoción en masa que se emprendan. Para lo anterior deberán considerarse, según el detalle que se requiera, variables como procesos erosivos, cobertura vegetal, densidad de drenajes, intensidad de erosión, precipitaciones e intensidad de lluvias, intervención antrópica, amenaza sísmica y uso del suelo, entre otros.

10.5 Cambio climático

Siguiendo la metodología que se ha implementado para formular los POT, es claro que el tema de Cambio Climático ha de abordarse desde la dimensión ambiental que hace parte del Diagnóstico y desde los componentes general, urbano y rural que hacen parte de la Formulación.

Ahora bien, como quiera que el Cambio Climático incide en los distintos componentes que se consideran en el Diagnóstico, es importante determinar los impactos que se deriven al analizar la información de las variables climáticas que significativamente son más afectados en cada componente del distrito.

Como el tema de adaptación al cambio climático es complejo y difícil de abordar por los entes territoriales, debido a la falta de capacitación del personal así como por la falta de bases de datos con las cuales se pueda evidenciar riesgo por efectos del cambio climático, es pertinente comenzar el proceso de adaptación con el desarrollo de proyectos conducentes a fortalecer el conocimiento...
del tema que es preocupación a nivel mundial y en el cual el gobierno colombiano ha suscrito convenios para adelantar estudios pertinentes y su incorporación en los procesos de desarrollo.

En el distrito, se adelanta actualmente el estudio sobre Lineamientos para la adaptación al cambio climático de Cartagena de Indias. Proyecto Integración de la Adaptación Al Cambio Climático en la Planificación Territorial y Gestión Sectorial de Cartagena de Indias. INVEMAR-MADS-Alcaldía Mayor de Cartagena de Indias-CDKN. 2012, que aportará la información necesaria y los lineamientos que deben ser incorporados dentro del POT.
11. RECOMENDACIONES

1. Las estrategias para la acción del plan Distrital para la Gestión del Riesgo de Cartagena de Indias, que se incluyen entregan, deben articularse con los macroproyectos de carácter nacional y departamental, propuestos para la región, que tengan incidencia directa en el distrito.

2. Con el fin de lograr una intervención integral que conduzca al desarrollo sostenible de Cartagena de Indias D.T.C, es necesario tener en cuanta diferentes estudios que se han desarrollado frente a la vulnerabilidad de la ciudad, en este sentido es pertinente retomar los resultados del análisis del Estado de Avance de los Objetivos del Milenio (ODM), realizado por PNUD en el 2012, en los que se indica que: “la situación de vulnerabilidad más pronunciada en Cartagena es originada en la violencia, lo institucional y económico, y en menor grado la ambiental, señalando este conjunto de factores que deben priorizarse en el planteamiento y ejecución de una política pública distrital orientada a disminuir la vulnerabilidad.

Del análisis del Objetivo 7. Garantizar la sostenibilidad ambiental, se concluye:

“El análisis del ODM 7 se realiza a partir de indicadores como las coberturas de acueducto y alcantarillado, y las condiciones de habitabilidad de la vivienda y el entorno de las personas. No obstante Cartagena enfrenta retos ambientales como la contaminación de la bahía, el deterioro del suelo en algunos sectores del área urbana –por la contaminación industrial y el proceso de urbanización– y la erosión de la línea de costa que hacen de Cartagena una ciudad vulnerable a los efectos del cambio climático y el aumento en el nivel del mar.

Los resultados positivos en acueducto y alcantarillado son incuestionables: entre 1983 y 2010 la cobertura de agua potable en la ciudad se duplicó, pasando según Acuacar de 40% en 1983 a 99.9% en 2010, lo que muestra un avance notable en términos de calidad ambiental. Igualmente, el servicio de alcantarillado pasó de tener una cobertura de 25% a 86.6% en el mismo periodo.

Sin embargo, según el DANE y la Superintendencia de Servicios Públicos Domiciliarios (SSPD), Cartagena muestra en 2007 una cobertura de acueducto de 90% y de 77% en alcantarillado, los mayores del departamento de Bolívar. Junto con Cucuta, la capital del departamento son los únicos municipios que cuentan con suministro las 24 horas del servicio de acueducto. Los resultados en coberturas aún se encuentran por debajo de la meta ODM del año 2015, según el cual el 99.2% de la población debe estar cubierta por el servicio de acueducto, y el 96.9% con alcantarillado.
Aunque de fuentes distintas, los datos de Acuacar mostrarían un rápido avance en la ampliación de las coberturas. Sin embargo, estos promedios esconden las enormes brechas urbanas y rurales en la oferta de ambos servicios. De acuerdo con Sisbén 3, aún existen en la ciudad las zonas con disponibilidad de agua y conexiones sanitarias más baja: Villa Fanny, Torices, Nariño, Pasacaballos, Policarpa, La Candelaria, Palestina, Arroz Barato, La Esperanza, Olaya Herrera (UCG 5), El Pozón y Bosque, entre otros, no cuentan actualmente con la cobertura promedio reportada por Acuacar (en este sentido, la información del Sisbén es más completa por considerar la disponibilidad de agua en la fuente y no simplemente la existencia de conexión a la red). En total cerca de 100 barrios en la ciudad reportan, según este sistema de información, disponibilidad de agua inferior al promedio de 99%. La situación del alcantarillado es igualmente sentida en los barrios y corregimientos de la ciudad, tanto así que medio centenar de estos cuentan con sanitarios sin conexión a redes de alcantarillado.

La existencia de estas brechas en cobertura y acceso trae graves consecuencias en el caso de las áreas colindantes de ecosistemas estratégicos como por ejemplo la Ciénaga de la Virgen, ya que la ausencia de alcantarillado incrementa los vertimientos a este cuerpo de agua. Igualmente, la ausencia de estos servicios genera problemas sanitarios que afectan sustancialmente la calidad de vida de la población. Relativo al ODM 1 (Erradicar la pobreza extrema y el hambre), la incidencia de la pobreza material medida a través del indicador de Necesidades Básicas Insatisfechas (NBI) se encuentra estrechamente relacionada con la disponibilidad de agua en los barrios con menor acceso al líquido.

Un aspecto adicional de la sostenibilidad ambiental se relaciona con la generación y gestión de residuos y de riesgos ambientales. En Cartagena, la disposición de residuos dispuestos en el relleno sanitario se ha incrementado anualmente 4.7% durante los últimos cinco años, pasando de 268.734 ton. en 2006 a 322.484 ton. en 2010. Esta cifra permite estimar para Cartagena una generación promedio diaria de 0.92% kg por habitante, cifra considerada como “alta” para una ciudad intermedia como ésta, dando cuenta de la necesidad de impulsar programas de separación en la fuente y reciclaje que apunten a realizar una mejor gestión de los residuos urbanos.

Por último, las condiciones de habitabilidad reportan resultados poco halagüeños. El déficit habitacional en Cartagena es cercano a las 80 mil viviendas, repartidas 65% en déficit cualitativo y 35% de déficit cuantitativo. Esto demuestra que los distintos auge de la construcción en Cartagena –el de mediados de los noventa, y más recientemente el ocurrido entre 2004 y 2007- no generaron los efectos redistributivos deseados. De hecho, el último boom registrado entre 2004 y 2007 en el mercado de la vivienda cartagenero, fue impulsado fundamentalmente por capital extranjero, el cual se concentró en el Centro Histórico y la zona norte de la ciudad.

En perspectiva, se requiere de mayor esfuerzo local para reducir las inequidades en el acceso a activos como la vivienda que resuelven la amenaza de los asentamientos precarios, ya que, como se expuso anteriormente, según estimaciones del gremio de la
construcción, Camacol, la demanda de vivienda en Cartagena aumentará hasta 2015 a razón de 14 mil nuevas unidades cada año”.

3. Es importante hacer énfasis en la responsabilidad que tienen los industriales frente a las amenazas tecnológicas. Tomando como premisas la protección de los seres humanos, el medio ambiente y la continuidad de la organización misma, los industriales en cuyas empresas se manejan sustancias peligrosas en alguna etapa del proceso, están obligados a manejar de manera integral sus riesgos sobre la base de la organización y la planeación, para lo cual deben tener en cuenta:

- Realizar el análisis y evaluación de sus riesgos.
- Diseñar y consolidar las medidas y programas de prevención y protección necesarias.
- Tener y consolidar la organización y la capacidad técnica necesarias para protegerse frente a los riesgos derivados de los materiales peligrosos que manipulan.
- Tener la capacidad adecuada frente a accidentes, incidentes y emergencias y/o los medios para contar con los apoyos necesarios cuando su capacidad autónoma sea excedida.

4. En el Plan de Ordenamiento Territorial de Cartagena de Indias, el contenido de Gestión del Riesgo y Cambio Climático debe ser integral y transversal, es decir, se debe incorporar en todos los temas que generen desarrollo en el distrito y que de alguna u otra manera, se pueden ver afectadas por algún evento de desastre.
BIBLIOGRAFÍA

- **ARISTIZABAL EDIER, SHUICHIRO YOKOTA, (2005).** Geomorfología Aplicada a la Ocurrencia de Deslizamientos en el Valle de Aburrá. Área Metropolitana del Valle de Aburrá, Colombia.

- **COMITÉ TÉCNICO NACIONAL DE ALERTA POR TSUNAMI –CTNAT, (2010).** Plan Nacional para la Gestión del Riesgo por Tsunami – PNGRT.

• CORPORACIÓN CENTRO DE DESARROLLO TECNOLÓGICO CARTAGENA DE INDIAS –CEDETEC-

• MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL, UNIDAD ADMINISTRATIVA ESPECIAL DEL SISTEMA PARQUES NACIONALES NATURALES DIRECCIÓN

• PNUD, (2011). Propuesta Técnica para Incorporar la Gestión del Riesgo en los Planes de Desarrollo y la Adapación al Cambio Climático en los POT y PDM.

• PNUD, (2012). Bolívar frente a la gestión del riesgo y la adaptación al cambio climático.

ANEXO 1. MATRIZ DE ESTRATEGIAS PARA LA ACCIÓN

PROGRAMA 1: CONOCIMIENTO DEL RIESGO.

PROGRAMA 2: REDUCCIÓN DEL RIESGO.

PROGRAMA 3: MANEJO DE DESASTRES.
PROGRAMA DE LAS NACIONES UNIDAS PARA EL DESARROLLO COLOMBIA –PNUD

Fabrizio Hochschild
Coordinador Residente y Humanitario
Silvia Rucks
Directora de País
Fernando Herrera
Coordinador Área Pobreza y Desarrollo Sostenible
Xavier Hernández
Oficial Programa en Gestión del Riesgo y Desarrollo Económico

PROYECTO GESTIÓN INTEGRAL DEL RIESGO Y ADAPTACIÓN AL CAMBIO CLIMÁTICO CARIBE PNUD-UNGRD

Clara Inés Álvarez Poveda
Coordinadora Nacional
Jorge Alberto Giraldo Botero
Coordinador Local Bolívar

PNUD
Calle 7 No. 36-145 Piso 1
Centro Histórico Plaza Fernández de Madrid
www.pnud.org.co